579 research outputs found

    Cooperative power control approaches towards fair radio resource allocation for wireless network

    Get PDF
    Performance optimization in wireless networks is a complex problem due to variability and dynamics in network topology and density, traffic patterns, mutual interference, channel uncertainties, etc. Opportunistic or selfish approaches may result in unbalanced allocation of channel capacity where particular links are overshadowed. This degrades overall network fairness and hinders a multi-hop communication by creating bottlenecks. A desired approach should allocate channel capacity proportionally to traffic priority in a cooperative manner. This work consists of two chapters that address the fairness share problem in wireless ad hoc, peer-to-peer networks and resource allocation within Cognitive Radio network. In the first paper, two fair power control schemes are proposed and mathematically analyzed. The schemes dynamically determine the viable resource allocation for a particular peer-to-peer network. In contrast, the traditional approaches often derive such viable capacity for a class of topologies. Moreover, the previous power control schemes assume that the target capacity allocation, or signal-to-interference ratio (SIR), is known and feasible. This leads to unfairness if the target SIR is not viable. The theoretical and simulation results show that the capacity is equally allocated for each link in the presence of radio channel uncertainties. In the second paper, based on the fair power control schemes, two novel power control schemes and an integrated power control scheme are proposed regarding the resource allocation for Cognitive Radio network to increase the efficiency of the resource while satisfying the Primary Users\u27 Quality of Service. Simulation result and tradeoff discussion are given --Abstract, page iv

    NetGAP: A Graph-Grammar approach for concept design of networked platforms with extra-functional requirements

    Full text link
    During the concept design of complex networked systems, concept developers have to assure that the choice of hardware modules and the topology of the target platform will provide adequate resources to support the needs of the application. For example, future-generation aerospace systems need to consider multiple requirements, with many trade-offs, foreseeing rapid technological change and a long time span for realization and service. For that purpose, we introduce NetGAP, an automated 3-phase approach to synthesize network topologies and support the exploration and concept design of networked systems with multiple requirements including dependability, security, and performance. NetGAP represents the possible interconnections between hardware modules using a graph grammar and uses a Monte Carlo Tree Search optimization to generate candidate topologies from the grammar while aiming to satisfy the requirements. We apply the proposed approach to the synthetic version of a realistic avionics application use case and show the merits of the solution to support the early-stage exploration of alternative candidate topologies. The method is shown to vividly characterize the topology-related trade-offs between requirements stemming from security, fault tolerance, timeliness, and the "cost" of adding new modules or links. Finally, we discuss the flexibility of using the approach when changes in the application and its requirements occur

    Single timescale regularized stochastic approximation schemes for monotone Nash games under uncertainty

    Full text link
    Abstract—In this paper, we consider the distributed compu-tation of equilibria arising in monotone stochastic Nash games over continuous strategy sets. Such games arise in settings when the gradient map of the player objectives is a monotone mapping over the cartesian product of strategy sets, leading to a monotone stochastic variational inequality. We consider the application of projection-based stochastic approximation schemes. However, such techniques are characterized by a key shortcoming: they can accommodate strongly monotone mappings only. In fact, standard extensions of stochastic ap-proximation schemes for merely monotone mappings require the solution of a sequence of related strongly monotone prob-lems, a natively two-timescale scheme. Accordingly, we consider the development of single timescale techniques for computing equilibria when the associated gradient map does not admit strong monotonicity. We first show that, under suitable assump-tions, standard projection schemes can indeed be extended to allow for strict, rather than strong monotonicity. Furthermore, we introduce a class of regularized stochastic approximation schemes, in which the regularization parameter is updated at every step, leading to a single timescale method. The scheme is a stochastic extension of an iterative Tikhonov regularization method and its global convergence is established. To aid in networked implementations, we consider an extension to this result where players are allowed to choose their steplengths independently and show if the deviation across their choices is suitably constrained, then the convergence of the scheme may be claimed. I

    Nash and Wardrop equilibria in aggregative games with coupling constraints

    Full text link
    We consider the framework of aggregative games, in which the cost function of each agent depends on his own strategy and on the average population strategy. As first contribution, we investigate the relations between the concepts of Nash and Wardrop equilibrium. By exploiting a characterization of the two equilibria as solutions of variational inequalities, we bound their distance with a decreasing function of the population size. As second contribution, we propose two decentralized algorithms that converge to such equilibria and are capable of coping with constraints coupling the strategies of different agents. Finally, we study the applications of charging of electric vehicles and of route choice on a road network.Comment: IEEE Trans. on Automatic Control (Accepted without changes). The first three authors contributed equall
    corecore