12,126 research outputs found

    A Continuation Method for Nash Equilibria in Structured Games

    Full text link
    Structured game representations have recently attracted interest as models for multi-agent artificial intelligence scenarios, with rational behavior most commonly characterized by Nash equilibria. This paper presents efficient, exact algorithms for computing Nash equilibria in structured game representations, including both graphical games and multi-agent influence diagrams (MAIDs). The algorithms are derived from a continuation method for normal-form and extensive-form games due to Govindan and Wilson; they follow a trajectory through a space of perturbed games and their equilibria, exploiting game structure through fast computation of the Jacobian of the payoff function. They are theoretically guaranteed to find at least one equilibrium of the game, and may find more. Our approach provides the first efficient algorithm for computing exact equilibria in graphical games with arbitrary topology, and the first algorithm to exploit fine-grained structural properties of MAIDs. Experimental results are presented demonstrating the effectiveness of the algorithms and comparing them to predecessors. The running time of the graphical game algorithm is similar to, and often better than, the running time of previous approximate algorithms. The algorithm for MAIDs can effectively solve games that are much larger than those solvable by previous methods

    Computational Results for Extensive-Form Adversarial Team Games

    Get PDF
    We provide, to the best of our knowledge, the first computational study of extensive-form adversarial team games. These games are sequential, zero-sum games in which a team of players, sharing the same utility function, faces an adversary. We define three different scenarios according to the communication capabilities of the team. In the first, the teammates can communicate and correlate their actions both before and during the play. In the second, they can only communicate before the play. In the third, no communication is possible at all. We define the most suitable solution concepts, and we study the inefficiency caused by partial or null communication, showing that the inefficiency can be arbitrarily large in the size of the game tree. Furthermore, we study the computational complexity of the equilibrium-finding problem in the three scenarios mentioned above, and we provide, for each of the three scenarios, an exact algorithm. Finally, we empirically evaluate the scalability of the algorithms in random games and the inefficiency caused by partial or null communication

    Quasi-Perfect Stackelberg Equilibrium

    Full text link
    Equilibrium refinements are important in extensive-form (i.e., tree-form) games, where they amend weaknesses of the Nash equilibrium concept by requiring sequential rationality and other beneficial properties. One of the most attractive refinement concepts is quasi-perfect equilibrium. While quasi-perfection has been studied in extensive-form games, it is poorly understood in Stackelberg settings---that is, settings where a leader can commit to a strategy---which are important for modeling, for example, security games. In this paper, we introduce the axiomatic definition of quasi-perfect Stackelberg equilibrium. We develop a broad class of game perturbation schemes that lead to them in the limit. Our class of perturbation schemes strictly generalizes prior perturbation schemes introduced for the computation of (non-Stackelberg) quasi-perfect equilibria. Based on our perturbation schemes, we develop a branch-and-bound algorithm for computing a quasi-perfect Stackelberg equilibrium. It leverages a perturbed variant of the linear program for computing a Stackelberg extensive-form correlated equilibrium. Experiments show that our algorithm can be used to find an approximate quasi-perfect Stackelberg equilibrium in games with thousands of nodes

    Robust Stackelberg Equilibria in Extensive-Form Games and Extension to Limited Lookahead

    Full text link
    Stackelberg equilibria have become increasingly important as a solution concept in computational game theory, largely inspired by practical problems such as security settings. In practice, however, there is typically uncertainty regarding the model about the opponent. This paper is, to our knowledge, the first to investigate Stackelberg equilibria under uncertainty in extensive-form games, one of the broadest classes of game. We introduce robust Stackelberg equilibria, where the uncertainty is about the opponent's payoffs, as well as ones where the opponent has limited lookahead and the uncertainty is about the opponent's node evaluation function. We develop a new mixed-integer program for the deterministic limited-lookahead setting. We then extend the program to the robust setting for Stackelberg equilibrium under unlimited and under limited lookahead by the opponent. We show that for the specific case of interval uncertainty about the opponent's payoffs (or about the opponent's node evaluations in the case of limited lookahead), robust Stackelberg equilibria can be computed with a mixed-integer program that is of the same asymptotic size as that for the deterministic setting.Comment: Published at AAAI1
    • …
    corecore