8,664 research outputs found

    Risk, Security and Robust Solutions

    Get PDF
    The aim of this paper is to develop a decision-theoretic approach to security management of uncertain multi-agent systems. Security is defined as the ability to deal with intentional and unintentional threats generated by agents. The main concern of the paper is the protection of public goods from these threats allowing explicit treatment of inherent uncertainties and robust security management solutions. The paper shows that robust solutions can be properly designed by new stochastic optimization tools applicable for multicriteria problems with uncertain probability distributions and multivariate extreme events

    A stochastic approximation algorithm for stochastic semidefinite programming

    Full text link
    Motivated by applications to multi-antenna wireless networks, we propose a distributed and asynchronous algorithm for stochastic semidefinite programming. This algorithm is a stochastic approximation of a continous- time matrix exponential scheme regularized by the addition of an entropy-like term to the problem's objective function. We show that the resulting algorithm converges almost surely to an ε\varepsilon-approximation of the optimal solution requiring only an unbiased estimate of the gradient of the problem's stochastic objective. When applied to throughput maximization in wireless multiple-input and multiple-output (MIMO) systems, the proposed algorithm retains its convergence properties under a wide array of mobility impediments such as user update asynchronicities, random delays and/or ergodically changing channels. Our theoretical analysis is complemented by extensive numerical simulations which illustrate the robustness and scalability of the proposed method in realistic network conditions.Comment: 25 pages, 4 figure
    corecore