1,238 research outputs found

    Boltzmann meets Nash: Energy-efficient routing in optical networks under uncertainty

    Full text link
    Motivated by the massive deployment of power-hungry data centers for service provisioning, we examine the problem of routing in optical networks with the aim of minimizing traffic-driven power consumption. To tackle this issue, routing must take into account energy efficiency as well as capacity considerations; moreover, in rapidly-varying network environments, this must be accomplished in a real-time, distributed manner that remains robust in the presence of random disturbances and noise. In view of this, we derive a pricing scheme whose Nash equilibria coincide with the network's socially optimum states, and we propose a distributed learning method based on the Boltzmann distribution of statistical mechanics. Using tools from stochastic calculus, we show that the resulting Boltzmann routing scheme exhibits remarkable convergence properties under uncertainty: specifically, the long-term average of the network's power consumption converges within ε\varepsilon of its minimum value in time which is at most O~(1/ε2)\tilde O(1/\varepsilon^2), irrespective of the fluctuations' magnitude; additionally, if the network admits a strict, non-mixing optimum state, the algorithm converges to it - again, no matter the noise level. Our analysis is supplemented by extensive numerical simulations which show that Boltzmann routing can lead to a significant decrease in power consumption over basic, shortest-path routing schemes in realistic network conditions.Comment: 24 pages, 4 figure

    Applications of Repeated Games in Wireless Networks: A Survey

    Full text link
    A repeated game is an effective tool to model interactions and conflicts for players aiming to achieve their objectives in a long-term basis. Contrary to static noncooperative games that model an interaction among players in only one period, in repeated games, interactions of players repeat for multiple periods; and thus the players become aware of other players' past behaviors and their future benefits, and will adapt their behavior accordingly. In wireless networks, conflicts among wireless nodes can lead to selfish behaviors, resulting in poor network performances and detrimental individual payoffs. In this paper, we survey the applications of repeated games in different wireless networks. The main goal is to demonstrate the use of repeated games to encourage wireless nodes to cooperate, thereby improving network performances and avoiding network disruption due to selfish behaviors. Furthermore, various problems in wireless networks and variations of repeated game models together with the corresponding solutions are discussed in this survey. Finally, we outline some open issues and future research directions.Comment: 32 pages, 15 figures, 5 tables, 168 reference

    The effect of competition among brokers on the quality and price of differentiated internet services

    Full text link
    Price war, as an important factor in undercutting competitors and attracting customers, has spurred considerable work that analyzes such conflict situation. However, in most of these studies, quality of service (QoS), as an important decision-making criterion, has been neglected. Furthermore, with the rise of service-oriented architectures, where players may offer different levels of QoS for different prices, more studies are needed to examine the interaction among players within the service hierarchy. In this paper, we present a new approach to modeling price competition in (virtualized) service-oriented architectures, where there are multiple service levels. In our model, brokers, as the intermediaries between end-users and service providers, offer different QoS by adapting the service that they obtain from lower-level providers so as to match the demands of their clients to the services of providers. To maximize profit, players, i.e. providers and brokers, at each level compete in a Bertrand game while they offer different QoS. To maintain an oligopoly market, we then describe underlying dynamics which lead to a Bertrand game with price constraints at the providers' level. Numerical simulations demonstrate the behavior of brokers and providers and the effect of price competition on their market shares.This work has been partly supported by National Science Foundation awards: CNS-0963974, CNS-1346688, CNS-1536090 and CNS-1647084

    Statics and dynamics of selfish interactions in distributed service systems

    Get PDF
    We study a class of games which model the competition among agents to access some service provided by distributed service units and which exhibit congestion and frustration phenomena when service units have limited capacity. We propose a technique, based on the cavity method of statistical physics, to characterize the full spectrum of Nash equilibria of the game. The analysis reveals a large variety of equilibria, with very different statistical properties. Natural selfish dynamics, such as best-response, usually tend to large-utility equilibria, even though those of smaller utility are exponentially more numerous. Interestingly, the latter actually can be reached by selecting the initial conditions of the best-response dynamics close to the saturation limit of the service unit capacities. We also study a more realistic stochastic variant of the game by means of a simple and effective approximation of the average over the random parameters, showing that the properties of the average-case Nash equilibria are qualitatively similar to the deterministic ones.Comment: 30 pages, 10 figure
    • …
    corecore