3,043 research outputs found

    Unsupervised Domain Adaptation using Graph Transduction Games

    Full text link
    Unsupervised domain adaptation (UDA) amounts to assigning class labels to the unlabeled instances of a dataset from a target domain, using labeled instances of a dataset from a related source domain. In this paper, we propose to cast this problem in a game-theoretic setting as a non-cooperative game and introduce a fully automatized iterative algorithm for UDA based on graph transduction games (GTG). The main advantages of this approach are its principled foundation, guaranteed termination of the iterative algorithms to a Nash equilibrium (which corresponds to a consistent labeling condition) and soft labels quantifying the uncertainty of the label assignment process. We also investigate the beneficial effect of using pseudo-labels from linear classifiers to initialize the iterative process. The performance of the resulting methods is assessed on publicly available object recognition benchmark datasets involving both shallow and deep features. Results of experiments demonstrate the suitability of the proposed game-theoretic approach for solving UDA tasks.Comment: Oral IJCNN 201

    Game Plan: What AI can do for Football, and What Football can do for AI

    Get PDF
    The rapid progress in artificial intelligence (AI) and machine learning has opened unprecedented analytics possibilities in various team and individual sports, including baseball, basketball, and tennis. More recently, AI techniques have been applied to football, due to a huge increase in data collection by professional teams, increased computational power, and advances in machine learning, with the goal of better addressing new scientific challenges involved in the analysis of both individual players’ and coordinated teams’ behaviors. The research challenges associated with predictive and prescriptive football analytics require new developments and progress at the intersection of statistical learning, game theory, and computer vision. In this paper, we provide an overarching perspective highlighting how the combination of these fields, in particular, forms a unique microcosm for AI research, while offering mutual benefits for professional teams, spectators, and broadcasters in the years to come. We illustrate that this duality makes football analytics a game changer of tremendous value, in terms of not only changing the game of football itself, but also in terms of what this domain can mean for the field of AI. We review the state-of-theart and exemplify the types of analysis enabled by combining the aforementioned fields, including illustrative examples of counterfactual analysis using predictive models, and the combination of game-theoretic analysis of penalty kicks with statistical learning of player attributes. We conclude by highlighting envisioned downstream impacts, including possibilities for extensions to other sports (real and virtual)

    Multiparty Dynamics and Failure Modes for Machine Learning and Artificial Intelligence

    Full text link
    An important challenge for safety in machine learning and artificial intelligence systems is a~set of related failures involving specification gaming, reward hacking, fragility to distributional shifts, and Goodhart's or Campbell's law. This paper presents additional failure modes for interactions within multi-agent systems that are closely related. These multi-agent failure modes are more complex, more problematic, and less well understood than the single-agent case, and are also already occurring, largely unnoticed. After motivating the discussion with examples from poker-playing artificial intelligence (AI), the paper explains why these failure modes are in some senses unavoidable. Following this, the paper categorizes failure modes, provides definitions, and cites examples for each of the modes: accidental steering, coordination failures, adversarial misalignment, input spoofing and filtering, and goal co-option or direct hacking. The paper then discusses how extant literature on multi-agent AI fails to address these failure modes, and identifies work which may be useful for the mitigation of these failure modes.Comment: 12 Pages, This version re-submitted to Big Data and Cognitive Computing, Special Issue "Artificial Superintelligence: Coordination & Strategy

    LTLf and LDLf Synthesis under Partial Observability

    Get PDF
    In this paper, we study synthesis under partial observability for logical specifications over finite traces expressed in LTLf/LDLf. This form of synthesis can be seen as a generalization of planning under partial observability in nondeterministic domains, which is known to be 2EXPTIME-complete. We start by showing that the usual "belief-state construction" used in planning under partial observability works also for general LTLf/LDLf synthesis, though with a jump in computational complexity from 2EXPTIME to 3EXPTIME. Then we show that the belief-state construction can be avoided in favor of a direct automata construction which exploits projection to hide unobservable propositions. This allow us to prove that the problem remains 2EXPTIME-complete. The new synthesis technique proposed is effective and readily implementable
    • …
    corecore