76,463 research outputs found

    Characterising and recognising game-perfect graphs

    Get PDF
    Consider a vertex colouring game played on a simple graph with kk permissible colours. Two players, a maker and a breaker, take turns to colour an uncoloured vertex such that adjacent vertices receive different colours. The game ends once the graph is fully coloured, in which case the maker wins, or the graph can no longer be fully coloured, in which case the breaker wins. In the game gBg_B, the breaker makes the first move. Our main focus is on the class of gBg_B-perfect graphs: graphs such that for every induced subgraph HH, the game gBg_B played on HH admits a winning strategy for the maker with only Ο‰(H)\omega(H) colours, where Ο‰(H)\omega(H) denotes the clique number of HH. Complementing analogous results for other variations of the game, we characterise gBg_B-perfect graphs in two ways, by forbidden induced subgraphs and by explicit structural descriptions. We also present a clique module decomposition, which may be of independent interest, that allows us to efficiently recognise gBg_B-perfect graphs.Comment: 39 pages, 8 figures. An extended abstract was accepted at the International Colloquium on Graph Theory (ICGT) 201

    On characterizing game-perfect graphs by forbidden induced subgraphs

    Get PDF
    A graph GG is called gg-perfect if, for any induced subgraph HH of GG, the game chromatic number of HH equals the clique number of HH. A graph GG is called gg-col-perfect if, for any induced subgraph HH of GG, the game coloring number of HH equals the clique number of HH. In this paper we characterize the classes of gg-perfect resp. gg-col-perfect graphs by a set of forbidden induced subgraphs and explicitly. Moreover, we study similar notions for variants of the game chromatic number, namely BB-perfect and [A,B][A,B]-perfect graphs, and for several variants of the game coloring number, and characterize the classes of these graphs

    Line game-perfect graphs

    Full text link
    The [X,Y][X,Y]-edge colouring game is played with a set of kk colours on a graph GG with initially uncoloured edges by two players, Alice (A) and Bob (B). The players move alternately. Player X∈{A,B}X\in\{A,B\} has the first move. Y∈{A,B,βˆ’}Y\in\{A,B,-\}. If Y∈{A,B}Y\in\{A,B\}, then only player YY may skip any move, otherwise skipping is not allowed for any player. A move consists in colouring an uncoloured edge with one of the kk colours such that adjacent edges have distinct colours. When no more moves are possible, the game ends. If every edge is coloured in the end, Alice wins; otherwise, Bob wins. The [X,Y][X,Y]-game chromatic index Ο‡[X,Y]β€²(G)\chi_{[X,Y]}'(G) is the smallest nonnegative integer kk such that Alice has a winning strategy for the [X,Y][X,Y]-edge colouring game played on GG with kk colours. The graph GG is called line [X,Y][X,Y]-perfect if, for any edge-induced subgraph HH of GG, Ο‡[X,Y]β€²(H)=Ο‰(L(H)),\chi_{[X,Y]}'(H)=\omega(L(H)), where Ο‰(L(H))\omega(L(H)) denotes the clique number of the line graph of HH. For each of the six possibilities (X,Y)∈{A,B}Γ—{A,B,βˆ’}(X,Y)\in\{A,B\}\times\{A,B,-\}, we characterise line [X,Y][X,Y]-perfect graphs by forbidden (edge-induced) subgraphs and by explicit structural descriptions, respectively

    Positional games on random graphs

    Full text link
    We introduce and study Maker/Breaker-type positional games on random graphs. Our main concern is to determine the threshold probability pFp_{F} for the existence of Maker's strategy to claim a member of FF in the unbiased game played on the edges of random graph G(n,p)G(n,p), for various target families FF of winning sets. More generally, for each probability above this threshold we study the smallest bias bb such that Maker wins the (1β€…b)(1\:b) biased game. We investigate these functions for a number of basic games, like the connectivity game, the perfect matching game, the clique game and the Hamiltonian cycle game
    • …
    corecore