59 research outputs found

    How friends and non-determinism affect opinion dynamics

    Full text link
    The Hegselmann-Krause system (HK system for short) is one of the most popular models for the dynamics of opinion formation in multiagent systems. Agents are modeled as points in opinion space, and at every time step, each agent moves to the mass center of all the agents within unit distance. The rate of convergence of HK systems has been the subject of several recent works. In this work, we investigate two natural variations of the HK system and their effect on the dynamics. In the first variation, we only allow pairs of agents who are friends in an underlying social network to communicate with each other. In the second variation, agents may not move exactly to the mass center but somewhere close to it. The dynamics of both variants are qualitatively very different from that of the classical HK system. Nevertheless, we prove that both these systems converge in polynomial number of non-trivial steps, regardless of the social network in the first variant and noise patterns in the second variant.Comment: 14 pages, 3 figure

    Inertial Hegselmann-Krause Systems

    Full text link
    We derive an energy bound for inertial Hegselmann-Krause (HK) systems, which we define as a variant of the classic HK model in which the agents can change their weights arbitrarily at each step. We use the bound to prove the convergence of HK systems with closed-minded agents, which settles a conjecture of long standing. This paper also introduces anchored HK systems and show their equivalence to the symmetric heterogeneous model

    Differential Game Strategies for Social Networks with Self-Interested Individuals

    Full text link
    A social network population engages in collective actions as a direct result of forming a particular opinion. The strategic interactions among the individuals acting independently and selfishly naturally portray a noncooperative game. Nash equilibrium allows for self-enforcing strategic interactions between selfish and self-interested individuals. This paper presents a differential game approach to the opinion formation problem in social networks to investigate the evolution of opinions as a result of a Nash equilibrium. The opinion of each individual is described by a differential equation, which is the continuous-time Hegselmann-Krause model for opinion dynamics with a time delay in input. The objective of each individual is to seek optimal strategies for her own opinion evolution by minimizing an individual cost function. Two differential game problems emerge, one for a population that is not stubborn and another for a population that is stubborn. The open-loop Nash equilibrium actions and their associated opinion trajectories are derived for both differential games using Pontryagin's principle. Additionally, the receding horizon control scheme is used to practice feedback strategies where the information flow is restricted by fixed and complete social graphs as well as the second neighborhood concept. The game strategies were executed on the well-known Zachary's Karate Club social network. The resulting opinion trajectories associated with the game strategies showed consensus, polarization, and disagreement in final opinions.Comment: Journal submission under review. arXiv admin note: substantial text overlap with arXiv:2310.0309

    Macroscopic Noisy Bounded Confidence Models with Distributed Radical Opinions

    Get PDF
    In this article, we study the nonlinear Fokker-Planck (FP) equation that arises as a mean-field (macroscopic) approximation of bounded confidence opinion dynamics, where opinions are influenced by environmental noises and opinions of radicals (stubborn individuals). The distribution of radical opinions serves as an infinite-dimensional exogenous input to the FP equation, visibly influencing the steady opinion profile. We establish mathematical properties of the FP equation. In particular, we (i) show the well-posedness of the dynamic equation, (ii) provide existence result accompanied by a quantitative global estimate for the corresponding stationary solution, and (iii) establish an explicit lower bound on the noise level that guarantees exponential convergence of the dynamics to stationary state. Combining the results in (ii) and (iii) readily yields the input-output stability of the system for sufficiently large noises. Next, using Fourier analysis, the structure of opinion clusters under the uniform initial distribution is examined. Specifically, two numerical schemes for identification of order-disorder transition and characterization of initial clustering behavior are provided. The results of analysis are validated through several numerical simulations of the continuum-agent model (partial differential equation) and the corresponding discrete-agent model (interacting stochastic differential equations) for a particular distribution of radicals
    • …
    corecore