8,119 research outputs found

    Game with a Purpose for Mappings Verification

    Full text link

    Formal Verification of Input-Output Mappings of Tree Ensembles

    Full text link
    Recent advances in machine learning and artificial intelligence are now being considered in safety-critical autonomous systems where software defects may cause severe harm to humans and the environment. Design organizations in these domains are currently unable to provide convincing arguments that their systems are safe to operate when machine learning algorithms are used to implement their software. In this paper, we present an efficient method to extract equivalence classes from decision trees and tree ensembles, and to formally verify that their input-output mappings comply with requirements. The idea is that, given that safety requirements can be traced to desirable properties on system input-output patterns, we can use positive verification outcomes in safety arguments. This paper presents the implementation of the method in the tool VoTE (Verifier of Tree Ensembles), and evaluates its scalability on two case studies presented in current literature. We demonstrate that our method is practical for tree ensembles trained on low-dimensional data with up to 25 decision trees and tree depths of up to 20. Our work also studies the limitations of the method with high-dimensional data and preliminarily investigates the trade-off between large number of trees and time taken for verification

    On the Automated Synthesis of Enterprise Integration Patterns to Adapt Choreography-based Distributed Systems

    Full text link
    The Future Internet is becoming a reality, providing a large-scale computing environments where a virtually infinite number of available services can be composed so to fit users' needs. Modern service-oriented applications will be more and more often built by reusing and assembling distributed services. A key enabler for this vision is then the ability to automatically compose and dynamically coordinate software services. Service choreographies are an emergent Service Engineering (SE) approach to compose together and coordinate services in a distributed way. When mismatching third-party services are to be composed, obtaining the distributed coordination and adaptation logic required to suitably realize a choreography is a non-trivial and error prone task. Automatic support is then needed. In this direction, this paper leverages previous work on the automatic synthesis of choreography-based systems, and describes our preliminary steps towards exploiting Enterprise Integration Patterns to deal with a form of choreography adaptation.Comment: In Proceedings FOCLASA 2015, arXiv:1512.0694

    Succinct progress measures for solving parity games

    Get PDF
    The recent breakthrough paper by Calude et al. has given the first algorithm for solving parity games in quasi-polynomial time, where previously the best algorithms were mildly subexponential. We devise an alternative quasi-polynomial time algorithm based on progress measures, which allows us to reduce the space required from quasi-polynomial to nearly linear. Our key technical tools are a novel concept of ordered tree coding, and a succinct tree coding result that we prove using bounded adaptive multi-counters, both of which are interesting in their own right

    Invariant Generation through Strategy Iteration in Succinctly Represented Control Flow Graphs

    Full text link
    We consider the problem of computing numerical invariants of programs, for instance bounds on the values of numerical program variables. More specifically, we study the problem of performing static analysis by abstract interpretation using template linear constraint domains. Such invariants can be obtained by Kleene iterations that are, in order to guarantee termination, accelerated by widening operators. In many cases, however, applying this form of extrapolation leads to invariants that are weaker than the strongest inductive invariant that can be expressed within the abstract domain in use. Another well-known source of imprecision of traditional abstract interpretation techniques stems from their use of join operators at merge nodes in the control flow graph. The mentioned weaknesses may prevent these methods from proving safety properties. The technique we develop in this article addresses both of these issues: contrary to Kleene iterations accelerated by widening operators, it is guaranteed to yield the strongest inductive invariant that can be expressed within the template linear constraint domain in use. It also eschews join operators by distinguishing all paths of loop-free code segments. Formally speaking, our technique computes the least fixpoint within a given template linear constraint domain of a transition relation that is succinctly expressed as an existentially quantified linear real arithmetic formula. In contrast to previously published techniques that rely on quantifier elimination, our algorithm is proved to have optimal complexity: we prove that the decision problem associated with our fixpoint problem is in the second level of the polynomial-time hierarchy.Comment: 35 pages, conference version published at ESOP 2011, this version is a CoRR version of our submission to Logical Methods in Computer Scienc

    Robust Linear Temporal Logic

    Get PDF
    Although it is widely accepted that every system should be robust, in the sense that "small" violations of environment assumptions should lead to "small" violations of system guarantees, it is less clear how to make this intuitive notion of robustness mathematically precise. In this paper, we address this problem by developing a robust version of Linear Temporal Logic (LTL), which we call robust LTL and denote by rLTL. Formulas in rLTL are syntactically identical to LTL formulas but are endowed with a many-valued semantics that encodes robustness. In particular, the semantics of the rLTL formula φ⇒ψ\varphi \Rightarrow \psi is such that a "small" violation of the environment assumption φ\varphi is guaranteed to only produce a "small" violation of the system guarantee ψ\psi. In addition to introducing rLTL, we study the verification and synthesis problems for this logic: similarly to LTL, we show that both problems are decidable, that the verification problem can be solved in time exponential in the number of subformulas of the rLTL formula at hand, and that the synthesis problem can be solved in doubly exponential time

    Link Prediction by De-anonymization: How We Won the Kaggle Social Network Challenge

    Full text link
    This paper describes the winning entry to the IJCNN 2011 Social Network Challenge run by Kaggle.com. The goal of the contest was to promote research on real-world link prediction, and the dataset was a graph obtained by crawling the popular Flickr social photo sharing website, with user identities scrubbed. By de-anonymizing much of the competition test set using our own Flickr crawl, we were able to effectively game the competition. Our attack represents a new application of de-anonymization to gaming machine learning contests, suggesting changes in how future competitions should be run. We introduce a new simulated annealing-based weighted graph matching algorithm for the seeding step of de-anonymization. We also show how to combine de-anonymization with link prediction---the latter is required to achieve good performance on the portion of the test set not de-anonymized---for example by training the predictor on the de-anonymized portion of the test set, and combining probabilistic predictions from de-anonymization and link prediction.Comment: 11 pages, 13 figures; submitted to IJCNN'201
    • …
    corecore