5,938 research outputs found

    Allocating Limited Resources to Protect a Massive Number of Targets using a Game Theoretic Model

    Full text link
    Resource allocation is the process of optimizing the rare resources. In the area of security, how to allocate limited resources to protect a massive number of targets is especially challenging. This paper addresses this resource allocation issue by constructing a game theoretic model. A defender and an attacker are players and the interaction is formulated as a trade-off between protecting targets and consuming resources. The action cost which is a necessary role of consuming resource, is considered in the proposed model. Additionally, a bounded rational behavior model (Quantal Response, QR), which simulates a human attacker of the adversarial nature, is introduced to improve the proposed model. To validate the proposed model, we compare the different utility functions and resource allocation strategies. The comparison results suggest that the proposed resource allocation strategy performs better than others in the perspective of utility and resource effectiveness.Comment: 14 pages, 12 figures, 41 reference

    A Game Theory Approach to Fair and Efficient Resource Allocation in Cloud Computing

    Get PDF
    On-demand resource management is a key characteristic of cloud computing. Cloud providers should support the computational resource sharing in a fair way to ensure that no user gets much better resources than others. Another goal is to improve the resource utilization by minimizing the resource fragmentation when mapping virtual machines to physical servers. The focus of this paper is the proposal of a game theoretic resources allocation algorithm that considers the fairness among users and the resources utilization for both. The experiments with an FUGA implementation on an 8-node server cluster show the optimality of this algorithm in keeping fairness by comparing with the evaluation of the Hadoop scheduler. The simulations based on Google workload trace demonstrate that the algorithm is able to reduce resource wastage and achieve a better resource utilization rate than other allocation mechanisms

    Profitable Task Allocation in Mobile Cloud Computing

    Full text link
    We propose a game theoretic framework for task allocation in mobile cloud computing that corresponds to offloading of compute tasks to a group of nearby mobile devices. Specifically, in our framework, a distributor node holds a multidimensional auction for allocating the tasks of a job among nearby mobile nodes based on their computational capabilities and also the cost of computation at these nodes, with the goal of reducing the overall job completion time. Our proposed auction also has the desired incentive compatibility property that ensures that mobile devices truthfully reveal their capabilities and costs and that those devices benefit from the task allocation. To deal with node mobility, we perform multiple auctions over adaptive time intervals. We develop a heuristic approach to dynamically find the best time intervals between auctions to minimize unnecessary auctions and the accompanying overheads. We evaluate our framework and methods using both real world and synthetic mobility traces. Our evaluation results show that our game theoretic framework improves the job completion time by a factor of 2-5 in comparison to the time taken for executing the job locally, while minimizing the number of auctions and the accompanying overheads. Our approach is also profitable for the nearby nodes that execute the distributor's tasks with these nodes receiving a compensation higher than their actual costs

    Coalition Formation and Combinatorial Auctions; Applications to Self-organization and Self-management in Utility Computing

    Full text link
    In this paper we propose a two-stage protocol for resource management in a hierarchically organized cloud. The first stage exploits spatial locality for the formation of coalitions of supply agents; the second stage, a combinatorial auction, is based on a modified proxy-based clock algorithm and has two phases, a clock phase and a proxy phase. The clock phase supports price discovery; in the second phase a proxy conducts multiple rounds of a combinatorial auction for the package of services requested by each client. The protocol strikes a balance between low-cost services for cloud clients and a decent profit for the service providers. We also report the results of an empirical investigation of the combinatorial auction stage of the protocol.Comment: 14 page
    • …
    corecore