140 research outputs found

    Only-Train-Once MR Fingerprinting for Magnetization Transfer Contrast Quantification

    Full text link
    Magnetization transfer contrast magnetic resonance fingerprinting (MTC-MRF) is a novel quantitative imaging technique that simultaneously measures several tissue parameters of semisolid macromolecule and free bulk water. In this study, we propose an Only-Train-Once MR fingerprinting (OTOM) framework that estimates the free bulk water and MTC tissue parameters from MR fingerprints regardless of MRF schedule, thereby avoiding time-consuming process such as generation of training dataset and network training according to each MRF schedule. A recurrent neural network is designed to cope with two types of variants of MRF schedules: 1) various lengths and 2) various patterns. Experiments on digital phantoms and in vivo data demonstrate that our approach can achieve accurate quantification for the water and MTC parameters with multiple MRF schedules. Moreover, the proposed method is in excellent agreement with the conventional deep learning and fitting methods. The flexible OTOM framework could be an efficient tissue quantification tool for various MRF protocols.Comment: Accepted at 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI'22

    High-efficient Bloch simulation of magnetic resonance imaging sequences based on deep learning

    Full text link
    Objective: Bloch simulation constitutes an essential part of magnetic resonance imaging (MRI) development. However, even with the graphics processing unit (GPU) acceleration, the heavy computational load remains a major challenge, especially in large-scale, high-accuracy simulation scenarios. This work aims to develop a deep learning-based simulator to accelerate Bloch simulation. Approach: The simulator model, called Simu-Net, is based on an end-to-end convolutional neural network and is trained with synthetic data generated by traditional Bloch simulation. It uses dynamic convolution to fuse spatial and physical information with different dimensions and introduces position encoding templates to achieve position-specific labeling and overcome the receptive field limitation of the convolutional network. Main Results: Compared with mainstream GPU-based MRI simulation software, Simu-Net successfully accelerates simulations by hundreds of times in both traditional and advanced MRI pulse sequences. The accuracy and robustness of the proposed framework were verified qualitatively and quantitatively. Besides, the trained Simu-Net was applied to generate sufficient customized training samples for deep learning-based T2 mapping and comparable results to conventional methods were obtained in the human brain. Significance: As a proof-of-concept work, Simu-Net shows the potential to apply deep learning for rapidly approximating the forward physical process of MRI and may increase the efficiency of Bloch simulation for optimization of MRI pulse sequences and deep learning-based methods.Comment: 18 pages, 8 figure

    Magnetic resonance fingerprinting review part 2: Technique and directions

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154317/1/jmri26877.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154317/2/jmri26877_am.pd

    Simultaneous Multiparametric and Multidimensional Cardiovascular Magnetic Resonance Imaging

    Get PDF
    No abstract available

    Fast Acquisition and Reconstruction Techniques in MRI

    Get PDF
    The aim of this thesis was to develop fast reconstruction and acquisition techniques for MRI that can support clinical applications where time is a limiting factor. In general, fast acquisition techniques were realized by undersampling k-space, while fast reconstruction techniques were achieved by using efficient numerical algorithms. In particular, undersampled acquisitions were processed in a CS and MRF framework. Preconditioning techniques were used to accelerate CS reconstructions, and a number of challenges encountered in MRF were addressed using appropriate post-processing techniques. European Research Council (ERC) Advanced Grant (670629 NOMA MRI)LUMC / Geneeskund

    Roadmap on signal processing for next generation measurement systems

    Get PDF
    Signal processing is a fundamental component of almost any sensor-enabled system, with a wide range of applications across different scientific disciplines. Time series data, images, and video sequences comprise representative forms of signals that can be enhanced and analysed for information extraction and quantification. The recent advances in artificial intelligence and machine learning are shifting the research attention towards intelligent, data-driven, signal processing. This roadmap presents a critical overview of the state-of-the-art methods and applications aiming to highlight future challenges and research opportunities towards next generation measurement systems. It covers a broad spectrum of topics ranging from basic to industrial research, organized in concise thematic sections that reflect the trends and the impacts of current and future developments per research field. Furthermore, it offers guidance to researchers and funding agencies in identifying new prospects.AerodynamicsMicrowave Sensing, Signals & System

    Advanced Sensing and Image Processing Techniques for Healthcare Applications

    Get PDF
    This Special Issue aims to attract the latest research and findings in the design, development and experimentation of healthcare-related technologies. This includes, but is not limited to, using novel sensing, imaging, data processing, machine learning, and artificially intelligent devices and algorithms to assist/monitor the elderly, patients, and the disabled population
    corecore