1,148 research outputs found

    Game chromatic number of Cartesian and corona product graphs

    Get PDF
    The game chromatic number χg\chi_g is investigated for Cartesian product G□HG\square H and corona product G∘HG\circ H of two graphs GG and HH. The exact values for the game chromatic number of Cartesian product graph of S3□SnS_{3}\square S_{n} is found, where SnS_n is a star graph of order n+1n+1. This extends previous results of Bartnicki et al. [1] and Sia [5] on the game chromatic number of Cartesian product graphs. Let PmP_m be the path graph on mm vertices and CnC_n be the cycle graph on nn vertices. We have determined the exact values for the game chromatic number of corona product graphs Pm∘K1P_{m}\circ K_{1} and Pm∘CnP_{m}\circ C_{n}

    Kochen-Specker Sets and the Rank-1 Quantum Chromatic Number

    Full text link
    The quantum chromatic number of a graph GG is sandwiched between its chromatic number and its clique number, which are well known NP-hard quantities. We restrict our attention to the rank-1 quantum chromatic number χq(1)(G)\chi_q^{(1)}(G), which upper bounds the quantum chromatic number, but is defined under stronger constraints. We study its relation with the chromatic number χ(G)\chi(G) and the minimum dimension of orthogonal representations ξ(G)\xi(G). It is known that ξ(G)≤χq(1)(G)≤χ(G)\xi(G) \leq \chi_q^{(1)}(G) \leq \chi(G). We answer three open questions about these relations: we give a necessary and sufficient condition to have ξ(G)=χq(1)(G)\xi(G) = \chi_q^{(1)}(G), we exhibit a class of graphs such that ξ(G)<χq(1)(G)\xi(G) < \chi_q^{(1)}(G), and we give a necessary and sufficient condition to have χq(1)(G)<χ(G)\chi_q^{(1)}(G) < \chi(G). Our main tools are Kochen-Specker sets, collections of vectors with a traditionally important role in the study of noncontextuality of physical theories, and more recently in the quantification of quantum zero-error capacities. Finally, as a corollary of our results and a result by Avis, Hasegawa, Kikuchi, and Sasaki on the quantum chromatic number, we give a family of Kochen-Specker sets of growing dimension.Comment: 12 page

    Sabidussi Versus Hedetniemi for Three Variations of the Chromatic Number

    Full text link
    We investigate vector chromatic number, Lovasz theta of the complement, and quantum chromatic number from the perspective of graph homomorphisms. We prove an analog of Sabidussi's theorem for each of these parameters, i.e. that for each of the parameters, the value on the Cartesian product of graphs is equal to the maximum of the values on the factors. We also prove an analog of Hedetniemi's conjecture for Lovasz theta of the complement, i.e. that its value on the categorical product of graphs is equal to the minimum of its values on the factors. We conjecture that the analogous results hold for vector and quantum chromatic number, and we prove that this is the case for some special classes of graphs.Comment: 18 page

    A Generalization of Kochen-Specker Sets Relates Quantum Coloring to Entanglement-Assisted Channel Capacity

    Get PDF
    We introduce two generalizations of Kochen-Specker (KS) sets: projective KS sets and generalized KS sets. We then use projective KS sets to characterize all graphs for which the chromatic number is strictly larger than the quantum chromatic number. Here, the quantum chromatic number is defined via a nonlocal game based on graph coloring. We further show that from any graph with separation between these two quantities, one can construct a classical channel for which entanglement assistance increases the one-shot zero-error capacity. As an example, we exhibit a new family of classical channels with an exponential increase.Comment: 16 page
    • …
    corecore