26,060 research outputs found

    Energy sharing and trading in multi-operator heterogeneous network deployments

    Get PDF
    © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.With a view to the expected increased data traffic volume and energy consumption of the fifth generation networks, the use of renewable energy (RE) sources and infrastructure sharing have been embraced as energy and cost-saving technologies. Aiming at reducing cost and grid energy consumption, in the present paper, we study RE exchange (REE) possibilities in late-trend network deployments of energy harvesting (EH) macrocell and small cell base stations (EH-MBSs, EH-SBSs) that use an EH system, an energy storage system, and the smart grid as energy procurement sources. On this basis, we study a two-tier network composed of EH-MBSs that are passively shared among a set of mobile network operators (MNOs), and EH-SBSs that are provided to MNOs by an infrastructure provider (InP). Taking into consideration the infrastructure location and the variety of stakeholders involved in the network deployment, we propose as REE approaches 1) a cooperative RE sharing, based on bankruptcy theory, for the shared EH-MBSs and 2) a non-cooperative, aggregator-assisted RE trading, which uses double auctions to describe the REE acts among the InP provided EH-SBSs managed by different MNOs, after an initial internal REE among the ones managed by a single MNO. Our results display that our proposals outperform baseline approaches, providing a considerable reduction in SG energy utilization and costs, with satisfaction of the participant parties.Peer ReviewedPostprint (author's final draft

    Game-theoretic infrastructure sharing in multioperator cellular networks

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The introduction of fourth-generation wireless technologies has fueled the rapid development of cellular networks, significantly increasing the energy consumption and the expenditures of mobile network operators (MNOs). In addition, network underutilization during low-traffic periods (e.g., night zone) has motivated a new business model, namely, infrastructure sharing, which allows the MNOs to have their traffic served by other MNOs in the same geographic area, thus enabling them to switch off part of their network. In this paper, we propose a novel infrastructure-sharing algorithm for multioperator environments, which enables the deactivation of underutilized base stations during low-traffic periods. Motivated by the conflicting interests of the MNOs and the necessity for effective solutions, we introduce a game-theoretic framework that enables the MNOs to individually estimate the switching-off probabilities that reduce their expected financial cost. Our approach reaches dominant strategy equilibrium, which is the strategy that minimizes the cost of each player. Finally, we provide extensive analytical and experimental results to estimate the potential energy and cost savings that can be achieved in multioperator environments, incentivizing the MNOs to apply the proposed scheme.Peer ReviewedPostprint (author's final draft
    corecore