1,484 research outputs found

    A Cost-effective Shuffling Method against DDoS Attacks using Moving Target Defense

    Full text link
    Moving Target Defense (MTD) has emerged as a newcomer into the asymmetric field of attack and defense, and shuffling-based MTD has been regarded as one of the most effective ways to mitigate DDoS attacks. However, previous work does not acknowledge that frequent shuffles would significantly intensify the overhead. MTD requires a quantitative measure to compare the cost and effectiveness of available adaptations and explore the best trade-off between them. In this paper, therefore, we propose a new cost-effective shuffling method against DDoS attacks using MTD. By exploiting Multi-Objective Markov Decision Processes to model the interaction between the attacker and the defender, and designing a cost-effective shuffling algorithm, we study the best trade-off between the effectiveness and cost of shuffling in a given shuffling scenario. Finally, simulation and experimentation on an experimental software defined network (SDN) indicate that our approach imposes an acceptable shuffling overload and is effective in mitigating DDoS attacks

    A Survey of Network Requirements for Enabling Effective Cyber Deception

    Full text link
    In the evolving landscape of cybersecurity, the utilization of cyber deception has gained prominence as a proactive defense strategy against sophisticated attacks. This paper presents a comprehensive survey that investigates the crucial network requirements essential for the successful implementation of effective cyber deception techniques. With a focus on diverse network architectures and topologies, we delve into the intricate relationship between network characteristics and the deployment of deception mechanisms. This survey provides an in-depth analysis of prevailing cyber deception frameworks, highlighting their strengths and limitations in meeting the requirements for optimal efficacy. By synthesizing insights from both theoretical and practical perspectives, we contribute to a comprehensive understanding of the network prerequisites crucial for enabling robust and adaptable cyber deception strategies

    MystifY : A Proactive Moving-Target Defense for a Resilient SDN Controller in Software Defined CPS

    Get PDF
    The recent devastating mission Cyber–Physical System (CPS) attacks, failures, and the desperate need to scale and to dynamically adapt to changes, revolutionized traditional CPS to what we name as Software Defined CPS (SD-CPS). SD-CPS embraces the concept of Software Defined (SD) everything where CPS infrastructure is more elastic, dynamically adaptable and online-programmable. However, in SD-CPS, the threat became more immanent, as the long-been physically-protected assets are now programmatically accessible to cyber attackers. In SD-CPSs, a network failure hinders the entire functionality of the system. In this paper, we present MystifY, a spatiotemporal runtime diversification for Moving-Target Defense (MTD) to secure the SD-CPS infrastructure. In this paper, we relied on Smart Grid networks as crucial SD-CPS application to evaluate our presented solution. MystifY’s MTD relies on a set of pillars to ensure the SDN controller resiliency against failures and attacks. The 1st pillar is a grid-aware algorithm that optimally allocates the most suitable controller–deployment location in large-scale grids. The 2nd pillar is a special diversifier that dynamically relocates the controller between heterogeneously configured hosts to avoid host-based attacks. The 3rd pillar is a temporal diversifier that dynamically detours controller–workload between multiple controllers to enhance their reliability and to detect and avoid controller intrusions. Our experimental results showed the efficiency and effectiveness of the presented approach

    Mitigating Stealthy Link Flooding DDoS Attacks Using SDN-Based Moving Target Defense

    Get PDF
    With the increasing diversity and complication of Distributed Denial-of-Service (DDoS) attacks, it has become extremely challenging to design a fully protected network. For instance, recently, a new type of attack called Stealthy Link Flooding Attack (SLFA) has been shown to cause critical network disconnection problems, where the attacker targets the communication links in the surrounding area of a server. The existing defense mechanisms for this type of attack are based on the detection of some unusual traffic patterns; however, this might be too late as some severe damage might already be done. These mechanisms also do not consider countermeasures during the reconnaissance phase of these attacks. Over the last few years, moving target defense (MTD) has received increasing attention from the research community. The idea is based on frequently changing the network configurations to make it much more difficult for the attackers to attack the network. In this dissertation, we investigate several novel frameworks based on MTD to defend against contemporary DDoS attacks. Specifically, we first introduce MTD against the data phase of SLFA, where the bots are sending data packets to target links. In this framework, we mitigate the traffic if the bandwidth of communication links exceeds the given threshold, and experimentally show that our method significantly alleviates the congestion. As a second work, we propose a framework that considers the reconnaissance phase of SLFA, where the attacker strives to discover critical communication links. We create virtual networks to deceive the attacker and provide forensic features. In our third work, we consider the legitimate network reconnaissance requests while keeping the attacker confused. To this end, we integrate cloud technologies as overlay networks to our system. We demonstrate that the developed mechanism preserves the security of the network information with negligible delays. Finally, we address the problem of identifying and potentially engaging with the attacker. We model the interaction between attackers and defenders into a game and derive a defense mechanism based on the equilibria of the game. We show that game-based mechanisms could provide similar protection against SLFAs like the extensive periodic MTD solution with significantly reduced overhead. The frameworks in this dissertation were verified with extensive experiments as well as with the theoretical analysis. The research in this dissertation has yielded several novel defense mechanisms that provide comprehensive protection against SLFA. Besides, we have shown that they can be integrated conveniently and efficiently to the current network infrastructure
    • …
    corecore