4,374 research outputs found

    Backward Unraveling over Time: The Evolution of Strategic Behavior in the Entry-Level British Medical Labor Markets

    Get PDF
    This paper studies an adaptive artificial agent model using a genetic algorithm to analyze how a population of decision-makers learns to coordinate on the selection of an equilibrium or a social convention in a two-sided matching game. In the contexts of centralized and decentralized entry-level labor markets, evolution and adjustment paths of unraveling are explored using this model in an environment inspired by the Kagel and Roth (Quarterly Journal of Economics, 2000) experimental study. As an interesting result, it is demonstrated that stability need not be required for the success of a matching mechanism under incomplete information in the long run.Genetic algorithms, linear programming matching, stability, two-sided matching, unraveling

    A Novel Airborne Self-organising Architecture for 5G+ Networks

    Full text link
    Network Flying Platforms (NFPs) such as unmanned aerial vehicles, unmanned balloons or drones flying at low/medium/high altitude can be employed to enhance network coverage and capacity by deploying a swarm of flying platforms that implement novel radio resource management techniques. In this paper, we propose a novel layered architecture where NFPs, of various types and flying at low/medium/high layers in a swarm of flying platforms, are considered as an integrated part of the future cellular networks to inject additional capacity and expand the coverage for exceptional scenarios (sports events, concerts, etc.) and hard-to-reach areas (rural or sparsely populated areas). Successful roll-out of the proposed architecture depends on several factors including, but are not limited to: network optimisation for NFP placement and association, safety operations of NFP for network/equipment security, and reliability for NFP transport and control/signaling mechanisms. In this work, we formulate the optimum placement of NFP at a Lower Layer (LL) by exploiting the airborne Self-organising Network (SON) features. Our initial simulations show the NFP-LL can serve more User Equipment (UE)s using this placement technique.Comment: 5 pages, 2 figures, conference paper in IEEE VTC-Fall 2017, in Proceedings IEEE Vehicular Technology Conference (VTC-Fall 2017), Toronto, Canada, Sep. 201

    Adversarial learning games with deep learning models

    Full text link
    © 2017 IEEE. Deep learning has been found to be vulnerable to changes in the data distribution. This means that inputs that have an imperceptibly and immeasurably small difference from training data correspond to a completely different class label in deep learning. Thus an existing deep learning network like a Convolutional Neural Network (CNN) is vulnerable to adversarial examples. We design an adversarial learning algorithm for supervised learning in general and CNNs in particular. Adversarial examples are generated by a game theoretic formulation on the performance of deep learning. In the game, the interaction between an intelligent adversary and deep learning model is a two-person sequential noncooperative Stackelberg game with stochastic payoff functions. The Stackelberg game is solved by the Nash equilibrium which is a pair of strategies (learner weights and genetic operations) from which there is no incentive for either learner or adversary to deviate. The algorithm performance is evaluated under different strategy spaces on MNIST handwritten digits data. We show that the Nash equilibrium leads to solutions robust to subsequent adversarial data manipulations. Results suggest that game theory and stochastic optimization algorithms can be used to study performance vulnerabilities in deep learning models

    A Survey on Modeling Language Evolution in the New Millennium

    Get PDF
    AbstractLanguage is a complex evolving system and it is not a trivial task to model the dynamics of processes occurring during its evolution. Therefore, modeling language evolution has attracted the interest of several researchers giving rise to a lot of models in the literature of the last millennium. This work reviews the literature devoted to computationally represent the evolution of human language through formal models and provides an analysis of the bibliographic production and scientific impact of the surveyed language evolution models to give some conclusions about current trends and future perspectives of this research field. The survey provides also an overview of the strategies for validating and comparing the different language evolution models and how these techniques have been applied by the surveyed models

    Markov modeling of moving target defense games

    Get PDF
    We introduce a Markov-model-based framework for Moving Target Defense (MTD) analysis. The framework allows modeling of broad range of MTD strategies, provides general theorems about how the probability of a successful adversary defeating an MTD strategy is related to the amount of time/cost spent by the adversary, and shows how a multi-level composition of MTD strategies can be analyzed by a straightforward combination of the analysis for each one of these strategies. Within the proposed framework we define the concept of security capacity which measures the strength or effectiveness of an MTD strategy: the security capacity depends on MTD specific parameters and more general system parameters. We apply our framework to two concrete MTD strategies

    An Investigation Report on Auction Mechanism Design

    Full text link
    Auctions are markets with strict regulations governing the information available to traders in the market and the possible actions they can take. Since well designed auctions achieve desirable economic outcomes, they have been widely used in solving real-world optimization problems, and in structuring stock or futures exchanges. Auctions also provide a very valuable testing-ground for economic theory, and they play an important role in computer-based control systems. Auction mechanism design aims to manipulate the rules of an auction in order to achieve specific goals. Economists traditionally use mathematical methods, mainly game theory, to analyze auctions and design new auction forms. However, due to the high complexity of auctions, the mathematical models are typically simplified to obtain results, and this makes it difficult to apply results derived from such models to market environments in the real world. As a result, researchers are turning to empirical approaches. This report aims to survey the theoretical and empirical approaches to designing auction mechanisms and trading strategies with more weights on empirical ones, and build the foundation for further research in the field
    • …
    corecore