342 research outputs found

    Cooperative medium access control based on spectrum leasing

    No full text
    Based on cooperative spectrum leasing, a distributed “win–win” (WW) cooperative framework is designed to encourage the licensed source node (SN) to lease some part of its spectral resources to the unlicensed relay node (RN) for the sake of simultaneously improving the SN’s achievable rate and for reducing the energy consumption (EC). The potential candidate RNs carry out autonomous decisions concerning whether to contend for a cooperative transmission opportunity, which could dissipate some of their battery power, while conveying their traffic in light of their individual service requirements. Furthermore, a WW cooperative medium-access-control (MAC) protocol is designed to implement the proposed distributed WW cooperative framework. Simulation results demonstrate that our WW cooperative MAC protocol is capable of providing both substantial rate improvements and considerable energy savings for the cooperative spectrum leasing system

    PROTECT: Proximity-based Trust-advisor using Encounters for Mobile Societies

    Full text link
    Many interactions between network users rely on trust, which is becoming particularly important given the security breaches in the Internet today. These problems are further exacerbated by the dynamics in wireless mobile networks. In this paper we address the issue of trust advisory and establishment in mobile networks, with application to ad hoc networks, including DTNs. We utilize encounters in mobile societies in novel ways, noticing that mobility provides opportunities to build proximity, location and similarity based trust. Four new trust advisor filters are introduced - including encounter frequency, duration, behavior vectors and behavior matrices - and evaluated over an extensive set of real-world traces collected from a major university. Two sets of statistical analyses are performed; the first examines the underlying encounter relationships in mobile societies, and the second evaluates DTN routing in mobile peer-to-peer networks using trust and selfishness models. We find that for the analyzed trace, trust filters are stable in terms of growth with time (3 filters have close to 90% overlap of users over a period of 9 weeks) and the results produced by different filters are noticeably different. In our analysis for trust and selfishness model, our trust filters largely undo the effect of selfishness on the unreachability in a network. Thus improving the connectivity in a network with selfish nodes. We hope that our initial promising results open the door for further research on proximity-based trust
    • …
    corecore