55,630 research outputs found

    Game Theoretic Approaches to Massive Data Processing in Wireless Networks

    Full text link
    Wireless communication networks are becoming highly virtualized with two-layer hierarchies, in which controllers at the upper layer with tasks to achieve can ask a large number of agents at the lower layer to help realize computation, storage, and transmission functions. Through offloading data processing to the agents, the controllers can accomplish otherwise prohibitive big data processing. Incentive mechanisms are needed for the agents to perform the controllers' tasks in order to satisfy the corresponding objectives of controllers and agents. In this article, a hierarchical game framework with fast convergence and scalability is proposed to meet the demand for real-time processing for such situations. Possible future research directions in this emerging area are also discussed

    Optimal configuration of active and backup servers for augmented reality cooperative games

    Get PDF
    Interactive applications as online games and mobile devices have become more and more popular in recent years. From their combination, new and interesting cooperative services could be generated. For instance, gamers endowed with Augmented Reality (AR) visors connected as wireless nodes in an ad-hoc network, can interact with each other while immersed in the game. To enable this vision, we discuss here a hybrid architecture enabling game play in ad-hoc mode instead of the traditional client-server setting. In our architecture, one of the player nodes also acts as the server of the game, whereas other backup server nodes are ready to become active servers in case of disconnection of the network i.e. due to low energy level of the currently active server. This allows to have a longer gaming session before incurring in disconnections or energy exhaustion. In this context, the server election strategy with the aim of maximizing network lifetime is not so straightforward. To this end, we have hence analyzed this issue through a Mixed Integer Linear Programming (MILP) model and both numerical and simulation-based analysis shows that the backup servers solution fulfills its design objective

    A Smart Game for Data Transmission and Energy Consumption in the Internet of Things

    Get PDF
    The current trend in developing smart technology for the Internet of Things (IoT) has motivated a lot of research interest in optimizing data transmission or minimizing energy consumption, but with little evidence of proposals for achieving both objectives in a single model. Using the concept of game theory, we develop a new MAC protocol for IEEE 802.15.4 and IoT networks in which we formulate a novel expression for the players' utility function and establish a stable Nash equilibrium (NE) for the game. The proposed IEEE 802.15.4 MAC protocol is modeled as a smart game in which analytical expressions are derived for channel access probability, data transmission probability, and energy used. These analytical expressions are used in formulating an optimization problem (OP) that maximizes data transmission and minimizes energy consumption by nodes. The analysis and simulation results suggest that the proposed scheme is scalable and achieves better performance in terms of data transmission, energy-efficiency, and longevity, when compared with the default IEEE 802.15.4 access mechanism.Peer reviewe
    • …
    corecore