36,259 research outputs found

    An Integrated Fuzzy Clustering Cooperative Game Data Envelopment Analysis Model with application in Hospital Efficiency

    Get PDF
    Hospitals are the main sub-section of health care systems and evaluation of hospitals is one of the most important issue for health policy makers. Data Envelopment Analysis (DEA) is a nonparametric method that has recently been used for measuring efficiency and productivity of Decision Making Units (DMUs) and commonly applied for comparison of hospitals. However, one of the important assumption in DEA is that DMUs must be homogenous. The crucial issue in hospital efficiency is that hospitals are providing different services and so may not be comparable. In this paper, we propose an integrated fuzzy clustering cooperative game DEA approach. In fact, due to the lack of homogeneity among DMUs, we first propose to use a fuzzy C-means technique to cluster the DMUs. Then we apply DEA combined with the game theory where each DMU is considered as a player, using Core and Shapley value approaches within each cluster. The procedure has successfully been applied for performances measurement of 288 hospitals in 31 provinces of Iran. Finally, since the classical DEA model is not capable to distinguish between efficient DMUs, efficient hospitals within each cluster, are ranked using combined DEA model and cooperative game approach. The results show that the Core and Shapley values are suitable for fully ranking of efficient hospitals in the healthcare systems

    Synthesized cooperative strategies for intelligent multi-robots in a real-time distributed environment : a thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Computer Science at Massey University, Albany, New Zealand

    Get PDF
    In the robot soccer domain, real-time response usually curtails the development of more complex Al-based game strategies, path-planning and team cooperation between intelligent agents. In light of this problem, distributing computationally intensive algorithms between several machines to control, coordinate and dynamically assign roles to a team of robots, and allowing them to communicate via a network gives rise to real-time cooperation in a multi-robotic team. This research presents a myriad of algorithms tested on a distributed system platform that allows for cooperating multi- agents in a dynamic environment. The test bed is an extension of a popular robot simulation system in the public domain developed at Carnegie Mellon University, known as TeamBots. A low-level real-time network game protocol using TCP/IP and UDP were incorporated to allow for a conglomeration of multi-agent to communicate and work cohesively as a team. Intelligent agents were defined to take on roles such as game coach agent, vision agent, and soccer player agents. Further, team cooperation is demonstrated by integrating a real-time fuzzy logic-based ball-passing algorithm and a fuzzy logic algorithm for path planning. Keywords Artificial Intelligence, Ball Passing, the coaching system, Collaborative, Distributed Multi-Agent, Fuzzy Logic, Role Assignmen

    Caregiver Assessment Using Smart Gaming Technology: A Preliminary Approach

    Get PDF
    As pre-diagnostic technologies are becoming increasingly accessible, using them to improve the quality of care available to dementia patients and their caregivers is of increasing interest. Specifically, we aim to develop a tool for non-invasively assessing task performance in a simple gaming application. To address this, we have developed Caregiver Assessment using Smart Gaming Technology (CAST), a mobile application that personalizes a traditional word scramble game. Its core functionality uses a Fuzzy Inference System (FIS) optimized via a Genetic Algorithm (GA) to provide customized performance measures for each user of the system. With CAST, we match the relative level of difficulty of play using the individual's ability to solve the word scramble tasks. We provide an analysis of the preliminary results for determining task difficulty, with respect to our current participant cohort.Comment: 7 pages, 1 figures, 6 table

    Heuristic usability evaluation on games: a modular approach

    Get PDF
    Heuristic evaluation is the preferred method to assess usability in games when experts conduct this evaluation. Many heuristics guidelines have been proposed attending to specificities of games but they only focus on specific subsets of games or platforms. In fact, to date the most used guideline to evaluate games usability is still Nielsen’s proposal, which is focused on generic software. As a result, most evaluations do not cover important aspects in games such as mobility, multiplayer interactions, enjoyability and playability, etc. To promote the usage of new heuristics adapted to different game and platform aspects we propose a modular approach based on the classification of existing game heuristics using metadata and a tool, MUSE (Meta-heUristics uSability Evaluation tool) for games, which allows a rebuild of heuristic guidelines based on metadata selection in order to obtain a customized list for every real evaluation case. The usage of these new rebuilt heuristic guidelines allows an explicit attendance to a wide range of usability aspects in games and a better detection of usability issues. We preliminarily evaluate MUSE with an analysis of two different games, using both the Nielsen’s heuristics and the customized heuristic lists generated by our tool.Unión Europea PI055-15/E0
    corecore