190 research outputs found

    Intra-Body Communications for Nervous System Applications: Current Technologies and Future Directions

    Full text link
    The Internet of Medical Things (IoMT) paradigm will enable next generation healthcare by enhancing human abilities, supporting continuous body monitoring and restoring lost physiological functions due to serious impairments. This paper presents intra-body communication solutions that interconnect implantable devices for application to the nervous system, challenging the specific features of the complex intra-body scenario. The presented approaches include both speculative and implementative methods, ranging from neural signal transmission to testbeds, to be applied to specific neural diseases therapies. Also future directions in this research area are considered to overcome the existing technical challenges mainly associated with miniaturization, power supply, and multi-scale communications.Comment: https://www.sciencedirect.com/science/article/pii/S138912862300163

    Physical Multi-Layer Phantoms for Intra-Body Communications

    Full text link
    This paper presents approaches to creating tissue mimicking materials that can be used as phantoms for evaluating the performance of Body Area Networks (BAN). The main goal of the paper is to describe a methodology to create a repeatable experimental BAN platform that can be customized depending on the BAN scenario under test. Comparisons between different material compositions and percentages are shown, along with the resulting electrical properties of each mixture over the frequency range of interest for intra-body communications; 100 KHz to 100 MHz. Test results on a composite multi-layer sample are presented confirming the efficacy of the proposed methodology. To date, this is the first paper that provides guidance on how to decide on concentration levels of ingredients, depending on the exact frequency range of operation, and the desired matched electrical characteristics (conductivity vs. permittivity), to create multi-layer phantoms for intra-body communication applications

    A comprehensive survey of wireless body area networks on PHY, MAC, and network layers solutions

    Get PDF
    Recent advances in microelectronics and integrated circuits, system-on-chip design, wireless communication and intelligent low-power sensors have allowed the realization of a Wireless Body Area Network (WBAN). A WBAN is a collection of low-power, miniaturized, invasive/non-invasive lightweight wireless sensor nodes that monitor the human body functions and the surrounding environment. In addition, it supports a number of innovative and interesting applications such as ubiquitous healthcare, entertainment, interactive gaming, and military applications. In this paper, the fundamental mechanisms of WBAN including architecture and topology, wireless implant communication, low-power Medium Access Control (MAC) and routing protocols are reviewed. A comprehensive study of the proposed technologies for WBAN at Physical (PHY), MAC, and Network layers is presented and many useful solutions are discussed for each layer. Finally, numerous WBAN applications are highlighted

    Bioelectronic Sensor Nodes for Internet of Bodies

    Full text link
    Energy-efficient sensing with Physically-secure communication for bio-sensors on, around and within the Human Body is a major area of research today for development of low-cost healthcare, enabling continuous monitoring and/or secure, perpetual operation. These devices, when used as a network of nodes form the Internet of Bodies (IoB), which poses certain challenges including stringent resource constraints (power/area/computation/memory), simultaneous sensing and communication, and security vulnerabilities as evidenced by the DHS and FDA advisories. One other major challenge is to find an efficient on-body energy harvesting method to support the sensing, communication, and security sub-modules. Due to the limitations in the harvested amount of energy, we require reduction of energy consumed per unit information, making the use of in-sensor analytics/processing imperative. In this paper, we review the challenges and opportunities in low-power sensing, processing and communication, with possible powering modalities for future bio-sensor nodes. Specifically, we analyze, compare and contrast (a) different sensing mechanisms such as voltage/current domain vs time-domain, (b) low-power, secure communication modalities including wireless techniques and human-body communication, and (c) different powering techniques for both wearable devices and implants.Comment: 30 pages, 5 Figures. This is a pre-print version of the article which has been accepted for Publication in Volume 25 of the Annual Review of Biomedical Engineering (2023). Only Personal Use is Permitte

    Wireless body sensor networks for health-monitoring applications

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for publication in Physiological Measurement. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0967-3334/29/11/R01

    On the Security and Privacy of Implantable Medical Devices

    Get PDF

    On the Security and Privacy of Implantable Medical Devices

    Get PDF
    • 

    corecore