330 research outputs found

    Conceptual Based Hidden Data Analytics and Reduction Method for System Interface Enhancement Through Handheld devices

    Get PDF
    With the increasing demand placed on online systems by users, many organizations and companies are seeking to enhance their online interfaces to facilitate the search process on their hidden databases. Usually, users issue queries to a hidden database by using the search template provided by the system. In this thesis, a new approach based mainly on hidden database reduction preserving functional dependencies is developed for enhancing the online system interface through a small screen device. The developed approach is applied to online market systems like eBay. Offline hidden data analysis is used to discover attributes and their domains and different functional dependencies. In this thesis, a comparative study between several methods for mining functional dependencies shows the advantage of conceptual methods for data reduction. In addition, by using online consecutive reductions on search results, we adopted a method of displaying results in order of decreasing relevance. The validation of the proposed designed and developed methods prove their generality and suitability for system interfacing through continuous data reductions.NPRP-07-794-1-145 grant from the Qatar National Research Fund (a member of Qatar foundation

    Proceedings of the 5th International Workshop "What can FCA do for Artificial Intelligence?", FCA4AI 2016(co-located with ECAI 2016, The Hague, Netherlands, August 30th 2016)

    Get PDF
    International audienceThese are the proceedings of the fifth edition of the FCA4AI workshop (http://www.fca4ai.hse.ru/). Formal Concept Analysis (FCA) is a mathematically well-founded theory aimed at data analysis and classification that can be used for many purposes, especially for Artificial Intelligence (AI) needs. The objective of the FCA4AI workshop is to investigate two main main issues: how can FCA support various AI activities (knowledge discovery, knowledge representation and reasoning, learning, data mining, NLP, information retrieval), and how can FCA be extended in order to help AI researchers to solve new and complex problems in their domain. Accordingly, topics of interest are related to the following: (i) Extensions of FCA for AI: pattern structures, projections, abstractions. (ii) Knowledge discovery based on FCA: classification, data mining, pattern mining, functional dependencies, biclustering, stability, visualization. (iii) Knowledge processing based on concept lattices: modeling, representation, reasoning. (iv) Application domains: natural language processing, information retrieval, recommendation, mining of web of data and of social networks, etc

    Dynamic causal mining

    Get PDF
    Causality plays a central role in human reasoning, in particular, in common human decision-making, by providing a basis for strategy selection. The main aim of the research reported in this thesis is to develop a new way to identify dynamic causal relationships between attributes of a system. The first part of the thesis introduces the development of a new data mining algorithm, called Dynamic Causal Mining (DCM), which extracts rules from data sets based on simultaneous time stamps. The rules derived can be combined into policies, which can simulate the future behaviour of systems. New rules can be added to the policies depending on the degree of accuracy. In addition, facilities to process categorical or numerical attributes directly and approaches to prune the rule set efficiently are implemented in the DCM algorithm. The second part of the thesis discusses how to improve the DCM algorithm in order to identify delay and feedback relationships. Fuzzy logic is applied to manage the rules and policies flexibly and accurately during the learning process and help the algorithm to find feasible solutions. The third part of the thesis describes the application of the suggested algorithm to a problem in the game-theoretic domain. This part concludes with the suggestion to use concept lattices as a method to represent and structure the discovered knowledge

    FCAIR 2012 Formal Concept Analysis Meets Information Retrieval Workshop co-located with the 35th European Conference on Information Retrieval (ECIR 2013) March 24, 2013, Moscow, Russia

    Get PDF
    International audienceFormal Concept Analysis (FCA) is a mathematically well-founded theory aimed at data analysis and classifiation. The area came into being in the early 1980s and has since then spawned over 10000 scientific publications and a variety of practically deployed tools. FCA allows one to build from a data table with objects in rows and attributes in columns a taxonomic data structure called concept lattice, which can be used for many purposes, especially for Knowledge Discovery and Information Retrieval. The Formal Concept Analysis Meets Information Retrieval (FCAIR) workshop collocated with the 35th European Conference on Information Retrieval (ECIR 2013) was intended, on the one hand, to attract researchers from FCA community to a broad discussion of FCA-based research on information retrieval, and, on the other hand, to promote ideas, models, and methods of FCA in the community of Information Retrieval

    First Elements on Knowledge Discovery guided by Domain Knowledge (KDDK)

    Get PDF
    International audienceIn this paper, we present research trends carried out in the Orpailleur team at Loria, showing how knowledge discovery and knowledge processing may be combined. The knowledge discovery in databases process (KDD) consists in processing a huge volume of data for extracting significant and reusable knowledge units. From a knowledge representation perspective, the KDD process may take advantage of domain knowledge embedded in ontologies relative to the domain of data, leading to the notion of ''knowledge discovery guided by domain knowledge'' or KDDK. The KDDK process is based on the classification process (and its multiple forms), e.g. for modeling, representing, reasoning, and discovering. Some applications are detailed, showing how KDDK can be instantiated in an application domain. Finally, an architecture of an integrated KDDK system is proposed and discussed

    New Fundamental Technologies in Data Mining

    Get PDF
    The progress of data mining technology and large public popularity establish a need for a comprehensive text on the subject. The series of books entitled by "Data Mining" address the need by presenting in-depth description of novel mining algorithms and many useful applications. In addition to understanding each section deeply, the two books present useful hints and strategies to solving problems in the following chapters. The contributing authors have highlighted many future research directions that will foster multi-disciplinary collaborations and hence will lead to significant development in the field of data mining

    Adaptive Learning and Mining for Data Streams and Frequent Patterns

    Get PDF
    Aquesta tesi està dedicada al disseny d'algorismes de mineria de dades per fluxos de dades que evolucionen en el temps i per l'extracció d'arbres freqüents tancats. Primer ens ocupem de cadascuna d'aquestes tasques per separat i, a continuació, ens ocupem d'elles conjuntament, desenvolupant mètodes de classificació de fluxos de dades que contenen elements que són arbres. En el model de flux de dades, les dades arriben a gran velocitat, i els algorismes que els han de processar tenen limitacions estrictes de temps i espai. En la primera part d'aquesta tesi proposem i mostrem un marc per desenvolupar algorismes que aprenen de forma adaptativa dels fluxos de dades que canvien en el temps. Els nostres mètodes es basen en l'ús de mòduls detectors de canvi i estimadors en els llocs correctes. Proposem ADWIN, un algorisme de finestra lliscant adaptativa, per la detecció de canvi i manteniment d'estadístiques actualitzades, i proposem utilitzar-lo com a caixa negra substituint els comptadors en algorismes inicialment no dissenyats per a dades que varien en el temps. Com ADWIN té garanties teòriques de funcionament, això obre la possibilitat d'ampliar aquestes garanties als algorismes d'aprenentatge i de mineria de dades que l'usin. Provem la nostre metodologia amb diversos mètodes d'aprenentatge com el Naïve Bayes, partició, arbres de decisió i conjunt de classificadors. Construïm un marc experimental per fer mineria amb fluxos de dades que varien en el temps, basat en el programari MOA, similar al programari WEKA, de manera que sigui fàcil pels investigadors de realitzar-hi proves experimentals. Els arbres són grafs acíclics connectats i són estudiats com vincles en molts casos. En la segona part d'aquesta tesi, descrivim un estudi formal dels arbres des del punt de vista de mineria de dades basada en tancats. A més, presentem algorismes eficients per fer tests de subarbres i per fer mineria d'arbres freqüents tancats ordenats i no ordenats. S'inclou una anàlisi de l'extracció de regles d'associació de confiança plena dels conjunts d'arbres tancats, on hem trobat un fenomen interessant: les regles que la seva contrapart proposicional és no trivial, són sempre certes en els arbres a causa de la seva peculiar combinatòria. I finalment, usant aquests resultats en fluxos de dades evolutius i la mineria d'arbres tancats freqüents, hem presentat algorismes d'alt rendiment per fer mineria d'arbres freqüents tancats de manera adaptativa en fluxos de dades que evolucionen en el temps. Introduïm una metodologia general per identificar patrons tancats en un flux de dades, utilitzant la Teoria de Reticles de Galois. Usant aquesta metodologia, desenvolupem un algorisme incremental, un basat en finestra lliscant, i finalment un que troba arbres freqüents tancats de manera adaptativa en fluxos de dades. Finalment usem aquests mètodes per a desenvolupar mètodes de classificació per a fluxos de dades d'arbres.This thesis is devoted to the design of data mining algorithms for evolving data streams and for the extraction of closed frequent trees. First, we deal with each of these tasks separately, and then we deal with them together, developing classification methods for data streams containing items that are trees. In the data stream model, data arrive at high speed, and the algorithms that must process them have very strict constraints of space and time. In the first part of this thesis we propose and illustrate a framework for developing algorithms that can adaptively learn from data streams that change over time. Our methods are based on using change detectors and estimator modules at the right places. We propose an adaptive sliding window algorithm ADWIN for detecting change and keeping updated statistics from a data stream, and use it as a black-box in place or counters or accumulators in algorithms initially not designed for drifting data. Since ADWIN has rigorous performance guarantees, this opens the possibility of extending such guarantees to learning and mining algorithms. We test our methodology with several learning methods as Naïve Bayes, clustering, decision trees and ensemble methods. We build an experimental framework for data stream mining with concept drift, based on the MOA framework, similar to WEKA, so that it will be easy for researchers to run experimental data stream benchmarks. Trees are connected acyclic graphs and they are studied as link-based structures in many cases. In the second part of this thesis, we describe a rather formal study of trees from the point of view of closure-based mining. Moreover, we present efficient algorithms for subtree testing and for mining ordered and unordered frequent closed trees. We include an analysis of the extraction of association rules of full confidence out of the closed sets of trees, and we have found there an interesting phenomenon: rules whose propositional counterpart is nontrivial are, however, always implicitly true in trees due to the peculiar combinatorics of the structures. And finally, using these results on evolving data streams mining and closed frequent tree mining, we present high performance algorithms for mining closed unlabeled rooted trees adaptively from data streams that change over time. We introduce a general methodology to identify closed patterns in a data stream, using Galois Lattice Theory. Using this methodology, we then develop an incremental one, a sliding-window based one, and finally one that mines closed trees adaptively from data streams. We use these methods to develop classification methods for tree data streams.Postprint (published version
    • …
    corecore