5,189 research outputs found

    Parameterized generic Galois groups for q-difference equations, followed by the appendix "The Galois D-groupoid of a q-difference system" by Anne Granier

    Full text link
    We introduce the parameterized generic Galois group of a q-difference module, that is a differential group in the sense of Kolchin. It is associated to the smallest differential tannakian category generated by the q-difference module, equipped with the forgetful functor. Our previous results on the Grothendieck conjecture for q-difference equations lead to an adelic description of the parameterized generic Galois group, in the spirit of the Grothendieck-Katz's conjecture on p-curvatures. Using this description, we show that the Malgrange-Granier D-groupoid of a nonlinear q-difference system coincides, in the linear case, with the parameterized generic Galois group introduced here. The paper is followed by an appendix by A. Granier, that provides a quick introduction to the D-groupoid of a non-linear q-difference equation.Comment: The content of this paper was previously included in arXiv:1002.483

    Variations for Some Painlev\'e Equations

    Get PDF
    This paper first discusses irreducibility of a Painlev\'e equation PP. We explain how the Painlev\'e property is helpful for the computation of special classical and algebraic solutions. As in a paper of Morales-Ruiz we associate an autonomous Hamiltonian H\mathbb{H} to a Painlev\'e equation PP. Complete integrability of H\mathbb{H} is shown to imply that all solutions to PP are classical (which includes algebraic), so in particular PP is solvable by ''quadratures''. Next, we show that the variational equation of PP at a given algebraic solution coincides with the normal variational equation of H\mathbb{H} at the corresponding solution. Finally, we test the Morales-Ramis theorem in all cases P2P_{2} to P5P_{5} where algebraic solutions are present, by showing how our results lead to a quick computation of the component of the identity of the differential Galois group for the first two variational equations. As expected there are no cases where this group is commutative

    Galois differential algebras and categorical discretization of dynamical systems

    Full text link
    A categorical theory for the discretization of a large class of dynamical systems with variable coefficients is proposed. It is based on the existence of covariant functors between the Rota category of Galois differential algebras and suitable categories of abstract dynamical systems. The integrable maps obtained share with their continuous counterparts a large class of solutions and, in the linear case, the Picard-Vessiot group.Comment: 19 pages (examples added

    A Reduced Form for Linear Differential Systems and its Application to Integrability of Hamiltonian Systems

    Get PDF
    Let [A]:Y′=AY[A]: Y'=AY with A∈Mn(k)A\in \mathrm{M}_n (k) be a differential linear system. We say that a matrix R∈Mn(kˉ)R\in {\cal M}_{n}(\bar{k}) is a {\em reduced form} of [A][A] if R∈g(kˉ)R\in \mathfrak{g}(\bar{k}) and there exists P∈GLn(kˉ)P\in GL_n (\bar{k}) such that R=P−1(AP−P′)∈g(kˉ)R=P^{-1}(AP-P')\in \mathfrak{g}(\bar{k}). Such a form is often the sparsest possible attainable through gauge transformations without introducing new transcendants. In this article, we discuss how to compute reduced forms of some symplectic differential systems, arising as variational equations of hamiltonian systems. We use this to give an effective form of the Morales-Ramis theorem on (non)-integrability of Hamiltonian systems.Comment: 28 page

    Galois theory of fuchsian q-difference equations

    Get PDF
    We propose an analytical approach to the Galois theory of singular regular linear q-difference systems. We use Tannaka duality along with Birkhoff's classification scheme with the connection matrix to define and describe their Galois groups. Then we describe \emph{fundamental subgroups} that give rise to a Riemann-Hilbert correspondence and to a density theorem of Schlesinger's type.Comment: Prepublication du Laboratoire Emile Picard n.246. See also http://picard.ups-tlse.f
    • …
    corecore