160 research outputs found

    Ultrasound image based human gallbladder 3D modelling along with volume and stress level assessment

    Get PDF
    Purpose: Three-dimensional (3D) gallbladder (GB) geometrical models are essential to GB motor function evaluation and GB wall biomechanical property identification by employing finite element analysis (FEA) in GB disease diagnosis with ultrasound systems. Methods for establishing such 3D geometrical models based on static two-dimensional (2D) ultrasound images scanned along the long-axis/sagittal and short-axis/transverse cross-sections in routine GB disease diagnosis at the beginning of emptying phase have not been documented in the literature so far. Methods: Based on two custom MATLAB codes composed, two images were segmented manually to secure two sets of the scattered points for the long- and short-axis GB cross-section edges; and the points were best fitted with a piecewise cubic spline function, and the short-axis cross-section edges were lofted along the long-axis to yield a 3D geometrical model, then GB volume of the model was figured out. The model was read into SolidWorks for real surface generation and involved in ABAQUS for FEA. Results: 3D geometrical models of seven typical GB samples were established. Their GB volumes are with 15.5% and − 4.4% mean errors in comparison with those estimated with the ellipsoid model and sum-of-cylinders method but can be correlated to the latter very well. The maximum first principal in-plane stress in the 3D models is higher than in the ellipsoid model by a factor of 1.76. Conclusions: A numerical method was put forward here to create 3D GB geometrical models and can be applied to GB disease diagnosis and GB shape analysis with principal component method potentially in the future

    Abdominal Multi-Organ Segmentation Based on Feature Pyramid Network and Spatial Recurrent Neural Network

    Full text link
    As recent advances in AI are causing the decline of conventional diagnostic methods, the realization of end-to-end diagnosis is fast approaching. Ultrasound image segmentation is an important step in the diagnostic process. An accurate and robust segmentation model accelerates the process and reduces the burden of sonographers. In contrast to previous research, we take two inherent features of ultrasound images into consideration: (1) different organs and tissues vary in spatial sizes, (2) the anatomical structures inside human body form a relatively constant spatial relationship. Based on those two ideas, we propose a new image segmentation model combining Feature Pyramid Network (FPN) and Spatial Recurrent Neural Network (SRNN). We discuss why we use FPN to extract anatomical structures of different scales and how SRNN is implemented to extract the spatial context features in abdominal ultrasound images.Comment: IFAC World Congress 2023 pape

    A comparative evaluation for liver segmentation from spir images and a novel level set method using signed pressure force function

    Get PDF
    Thesis (Doctoral)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2013Includes bibliographical references (leaves: 118-135)Text in English; Abstract: Turkish and Englishxv, 145 leavesDeveloping a robust method for liver segmentation from magnetic resonance images is a challenging task due to similar intensity values between adjacent organs, geometrically complex liver structure and injection of contrast media, which causes all tissues to have different gray level values. Several artifacts of pulsation and motion, and partial volume effects also increase difficulties for automatic liver segmentation from magnetic resonance images. In this thesis, we present an overview about liver segmentation methods in magnetic resonance images and show comparative results of seven different liver segmentation approaches chosen from deterministic (K-means based), probabilistic (Gaussian model based), supervised neural network (multilayer perceptron based) and deformable model based (level set) segmentation methods. The results of qualitative and quantitative analysis using sensitivity, specificity and accuracy metrics show that the multilayer perceptron based approach and a level set based approach which uses a distance regularization term and signed pressure force function are reasonable methods for liver segmentation from spectral pre-saturation inversion recovery images. However, the multilayer perceptron based segmentation method requires a higher computational cost. The distance regularization term based automatic level set method is very sensitive to chosen variance of Gaussian function. Our proposed level set based method that uses a novel signed pressure force function, which can control the direction and velocity of the evolving active contour, is faster and solves several problems of other applied methods such as sensitivity to initial contour or variance parameter of the Gaussian kernel in edge stopping functions without using any regularization term

    An Interactive Automation for Human Biliary Tree Diagnosis Using Computer Vision

    Get PDF
    The biliary tree is a network of tubes that connects the liver to the gallbladder, an organ right beneath it. The bile duct is the major tube in the biliary tree. The dilatation of a bile duct is a key indicator for more major problems in the human body, such as stones and tumors, which are frequently caused by the pancreas or the papilla of vater. The detection of bile duct dilatation can be challenging for beginner or untrained medical personnel in many circumstances. Even professionals are unable to detect bile duct dilatation with the naked eye. This research presents a unique vision-based model for biliary tree initial diagnosis. To segment the biliary tree from the Magnetic Resonance Image, the framework used different image processing approaches (MRI). After the image’s region of interest was segmented, numerous calculations were performed on it to extract 10 features, including major and minor axes, bile duct area, biliary tree area, compactness, and some textural features (contrast, mean, variance and correlation). This study used a database of images from King Hussein Medical Center in Amman, Jordan, which included 200 MRI images, 100 normal cases, and 100 patients with dilated bile ducts. After the characteristics are extracted, various classifiers are used to determine the patients’ condition in terms of their health (normal or dilated). The findings demonstrate that the extracted features perform well with all classifiers in terms of accuracy and area under the curve. This study is unique in that it uses an automated approach to segment the biliary tree from MRI images, as well as scientifically correlating retrieved features with biliary tree status that has never been done before in the literature

    Automatic Ultrasound Scanning

    Get PDF

    Interventional radiology virtual simulator for liver biopsy

    Get PDF
    Purpose Training in Interventional Radiology currently uses the apprenticeship model, where clinical and technical skills of invasive procedures are learnt during practice in patients. This apprenticeship training method is increasingly limited by regulatory restrictions on working hours, concerns over patient risk through trainees’ inexperience and the variable exposure to case mix and emergencies during training. To address this, we have developed a computer-based simulation of visceral needle puncture procedures. Methods A real-time framework has been built that includes: segmentation, physically based modelling, haptics rendering, pseudo-ultrasound generation and the concept of a physical mannequin. It is the result of a close collaboration between different universities, involving computer scientists, clinicians, clinical engineers and occupational psychologists. Results The technical implementation of the framework is a robust and real-time simulation environment combining a physical platform and an immersive computerized virtual environment. The face, content and construct validation have been previously assessed, showing the reliability and effectiveness of this framework, as well as its potential for teaching visceral needle puncture. Conclusion A simulator for ultrasound-guided liver biopsy has been developed. It includes functionalities and metrics extracted from cognitive task analysis. This framework can be useful during training, particularly given the known difficulties in gaining significant practice of core skills in patients

    Reducing Artifacts Impact on IVUS Automatic Segmentation Via Inpainting

    Get PDF
    In this work we present a novel approach that uses digital inpainting to preprocess intravascular ultrasound (IVUS) images to reduce the impact of undesired features. Then, we automatically segment the arterial wall with active contour models. IVUS is a catheter-based medical imaging technique that produces cross-sectional images of blood vessels. Segmentation of vessel wall is particularly useful to study many coronary artery diseases, such atherosclerosis. Being IVUS a good technology to analyse the anatomy of the arterial wall, the modality may present several artifacts, such as shadows or catheter ring-down, that may difficult further processing. To deal with these artifacts, in this paper we consider an exemplar-oriented inpainting algorithm that replaces the corrupted information by using the unaltered neighbourhood. To determine the impact of this preprocessing step, segmentation results over inpainted and non-inpainted IVUS are presented. The images are compared with manually outlined contours, showing that the inpainting method promotes continuity of the arterial wall and improves the segmentation performance.Fil: Manterola, Hugo Luis. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lo Vercio, Lucas. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: del Fresno, Mirta Mariana. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Virtual Reality Simulation of Liver Biopsy with a Respiratory Component

    Get PDF
    International audienceThe field of computer-based simulators has grown exponentially in the last few decades, especially in Medicine. Advantages of medical simulators include: (1) provision of a platform where trainees can practice procedures without risk of harm to patients; (2) anatomical fidelity; (3) the ability to train in an environment wherein physiological behaviour is observed, something that is not permitted where in-vitro phantoms are used; (4) flexibility regarding anatomical and pathological variation of test cases that is valuable in the acquisition of experience; (5) quantification of metrics relating to task performance that can be used to monitor trainee performance throughout the learning curve; and (6) cost effectiveness. In this chapter, we will focus on the current state of the art of medical simulators, the relevant parameters required to design a medical simulator, the basic framework of the simulator, methods to produce a computer-based model of patient respiration and finally a description of a simulator for ultrasound guided for liver biopsy. The model that is discussed presents a framework that accurately simulates respiratory motion, allowing for the fine tuning of relevant parameters in order to produce a patient-specific breathing pattern that can then be incorporated into a simulation with real-rime haptic interaction. Thus work was conducted as part CRaIVE collaboration [1], whose aim is to develop simulators specific to interventional radiology

    Automatic registration of 3D models to laparoscopic video images for guidance during liver surgery

    Get PDF
    Laparoscopic liver interventions offer significant advantages over open surgery, such as less pain and trauma, and shorter recovery time for the patient. However, they also bring challenges for the surgeons such as the lack of tactile feedback, limited field of view and occluded anatomy. Augmented reality (AR) can potentially help during laparoscopic liver interventions by displaying sub-surface structures (such as tumours or vasculature). The initial registration between the 3D model extracted from the CT scan and the laparoscopic video feed is essential for an AR system which should be efficient, robust, intuitive to use and with minimal disruption to the surgical procedure. Several challenges of registration methods in laparoscopic interventions include the deformation of the liver due to gas insufflation in the abdomen, partial visibility of the organ and lack of prominent geometrical or texture-wise landmarks. These challenges are discussed in detail and an overview of the state of the art is provided. This research project aims to provide the tools to move towards a completely automatic registration. Firstly, the importance of pre-operative planning is discussed along with the characteristics of the liver that can be used in order to constrain a registration method. Secondly, maximising the amount of information obtained before the surgery, a semi-automatic surface based method is proposed to recover the initial rigid registration irrespective of the position of the shapes. Finally, a fully automatic 3D-2D rigid global registration is proposed which estimates a global alignment of the pre-operative 3D model using a single intra-operative image. Moving towards incorporating the different liver contours can help constrain the registration, especially for partial surfaces. Having a robust, efficient AR system which requires no manual interaction from the surgeon will aid in the translation of such approaches to the clinics
    • …
    corecore