322 research outputs found

    Discrete Hamilton-Jacobi Theory

    Full text link
    We develop a discrete analogue of Hamilton-Jacobi theory in the framework of discrete Hamiltonian mechanics. The resulting discrete Hamilton-Jacobi equation is discrete only in time. We describe a discrete analogue of Jacobi's solution and also prove a discrete version of the geometric Hamilton-Jacobi theorem. The theory applied to discrete linear Hamiltonian systems yields the discrete Riccati equation as a special case of the discrete Hamilton-Jacobi equation. We also apply the theory to discrete optimal control problems, and recover some well-known results, such as the Bellman equation (discrete-time HJB equation) of dynamic programming and its relation to the costate variable in the Pontryagin maximum principle. This relationship between the discrete Hamilton-Jacobi equation and Bellman equation is exploited to derive a generalized form of the Bellman equation that has controls at internal stages.Comment: 26 pages, 2 figure

    Convergent finite difference methods for one-dimensional fully nonlinear second order partial differential equations

    Full text link
    This paper develops a new framework for designing and analyzing convergent finite difference methods for approximating both classical and viscosity solutions of second order fully nonlinear partial differential equations (PDEs) in 1-D. The goal of the paper is to extend the successful framework of monotone, consistent, and stable finite difference methods for first order fully nonlinear Hamilton-Jacobi equations to second order fully nonlinear PDEs such as Monge-Amp\`ere and Bellman type equations. New concepts of consistency, generalized monotonicity, and stability are introduced; among them, the generalized monotonicity and consistency, which are easier to verify in practice, are natural extensions of the corresponding notions of finite difference methods for first order fully nonlinear Hamilton-Jacobi equations. The main component of the proposed framework is the concept of "numerical operator", and the main idea used to design consistent, monotone and stable finite difference methods is the concept of "numerical moment". These two new concepts play the same roles as the "numerical Hamiltonian" and the "numerical viscosity" play in the finite difference framework for first order fully nonlinear Hamilton-Jacobi equations. In the paper, two classes of consistent and monotone finite difference methods are proposed for second order fully nonlinear PDEs. The first class contains Lax-Friedrichs-like methods which also are proved to be stable and the second class contains Godunov-like methods. Numerical results are also presented to gauge the performance of the proposed finite difference methods and to validate the theoretical results of the paper.Comment: 23 pages, 8 figues, 11 table

    Analytical Approximation Methods for the Stabilizing Solution of the Hamiltonā€“Jacobi Equation

    Get PDF
    In this paper, two methods for approximating the stabilizing solution of the Hamiltonā€“Jacobi equation are proposed using symplectic geometry and a Hamiltonian perturbation technique as well as stable manifold theory. The first method uses the fact that the Hamiltonian lifted system of an integrable system is also integrable and regards the corresponding Hamiltonian system of the Hamiltonā€“Jacobi equation as an integrable Hamiltonian system with a perturbation caused by control. The second method directly approximates the stable flow of the Hamiltonian systems using a modification of stable manifold theory. Both methods provide analytical approximations of the stable Lagrangian submanifold from which the stabilizing solution is derived. Two examples illustrate the effectiveness of the methods.

    Convergent finite difference methods for one-dimensional fully nonlinear second order partial differential equations

    Get PDF
    This paper develops a new framework for designing and analyzing convergent finite difference methods for approximating both classical and viscosity solutions of second order fully nonlinear partial differential equations (PDEs) in 1-D. The goal of the paper is to extend the successful framework of monotone, consistent, and stable finite difference methods for first order fully nonlinear Hamiltonā€“Jacobi equations to second order fully nonlinear PDEs such as Mongeā€“AmpĆØre and Bellman type equations. New concepts of consistency, generalized monotonicity, and stability are introduced; among them, the generalized monotonicity and consistency, which are easier to verify in practice, are natural extensions of the corresponding notions of finite difference methods for first order fully nonlinear Hamiltonā€“Jacobi equations. The main component of the proposed framework is the concept of a ā€œnumerical operatorā€, and the main idea used to design consistent, generalized monotone and stable finite difference methods is the concept of a ā€œnumerical momentā€. These two new concepts play the same roles the ā€œnumerical Hamiltonianā€ and the ā€œnumerical viscosityā€ play in the finite difference framework for first order fully nonlinear Hamiltonā€“Jacobi equations. In the paper, two classes of consistent and monotone finite difference methods are proposed for second order fully nonlinear PDEs. The first class contains Laxā€“Friedrichs-like methods which also are proved to be stable, and the second class contains Godunov-like methods. Numerical results are also presented to gauge the performance of the proposed finite difference methods and to validate the theoretical results of the paper

    Polynomial approximation of high-dimensional Hamiltonā€“Jacobiā€“Bellman equations and applications to feedback control of semilinear parabolic PDES

    Get PDF
    Ā© 2018 Society for Industrial and Applied Mathematics. A procedure for the numerical approximation of high-dimensional Hamiltonā€“Jacobiā€“Bellman (HJB) equations associated to optimal feedback control problems for semilinear parabolic equations is proposed. Its main ingredients are a pseudospectral collocation approximation of the PDE dynamics and an iterative method for the nonlinear HJB equation associated to the feedback synthesis. The latter is known as the successive Galerkin approximation. It can also be interpreted as Newton iteration for the HJB equation. At every step, the associated linear generalized HJB equation is approximated via a separable polynomial approximation ansatz. Stabilizing feedback controls are obtained from solutions to the HJB equations for systems of dimension up to fourteen
    • ā€¦
    corecore