3,445 research outputs found

    Identifying Galaxy Mergers in Observations and Simulations with Deep Learning

    Get PDF
    Mergers are an important aspect of galaxy formation and evolution. We aim to test whether deep learning techniques can be used to reproduce visual classification of observations, physical classification of simulations and highlight any differences between these two classifications. With one of the main difficulties of merger studies being the lack of a truth sample, we can use our method to test biases in visually identified merger catalogues. A convolutional neural network architecture was developed and trained in two ways: one with observations from SDSS and one with simulated galaxies from EAGLE, processed to mimic the SDSS observations. The SDSS images were also classified by the simulation trained network and the EAGLE images classified by the observation trained network. The observationally trained network achieves an accuracy of 91.5% while the simulation trained network achieves 65.2% on the visually classified SDSS and physically classified EAGLE images respectively. Classifying the SDSS images with the simulation trained network was less successful, only achieving an accuracy of 64.6%, while classifying the EAGLE images with the observation network was very poor, achieving an accuracy of only 53.0% with preferential assignment to the non-merger classification. This suggests that most of the simulated mergers do not have conspicuous merger features and visually identified merger catalogues from observations are incomplete and biased towards certain merger types. The networks trained and tested with the same data perform the best, with observations performing better than simulations, a result of the observational sample being biased towards conspicuous mergers. Classifying SDSS observations with the simulation trained network has proven to work, providing tantalizing prospects for using simulation trained networks for galaxy identification in large surveys.Comment: Submitted to A&A, revised after first referee report. 20 pages, 22 figures, 14 tables, 1 appendi

    Galaxy Zoo: Reproducing Galaxy Morphologies Via Machine Learning

    Get PDF
    We present morphological classifications obtained using machine learning for objects in SDSS DR6 that have been classified by Galaxy Zoo into three classes, namely early types, spirals and point sources/artifacts. An artificial neural network is trained on a subset of objects classified by the human eye and we test whether the machine learning algorithm can reproduce the human classifications for the rest of the sample. We find that the success of the neural network in matching the human classifications depends crucially on the set of input parameters chosen for the machine-learning algorithm. The colours and parameters associated with profile-fitting are reasonable in separating the objects into three classes. However, these results are considerably improved when adding adaptive shape parameters as well as concentration and texture. The adaptive moments, concentration and texture parameters alone cannot distinguish between early type galaxies and the point sources/artifacts. Using a set of twelve parameters, the neural network is able to reproduce the human classifications to better than 90% for all three morphological classes. We find that using a training set that is incomplete in magnitude does not degrade our results given our particular choice of the input parameters to the network. We conclude that it is promising to use machine- learning algorithms to perform morphological classification for the next generation of wide-field imaging surveys and that the Galaxy Zoo catalogue provides an invaluable training set for such purposes.Comment: 13 Pages, 5 figures, 10 tables. Accepted for publication in MNRAS. Revised to match accepted version

    Decision Tree Classifiers for Star/Galaxy Separation

    Full text link
    We study the star/galaxy classification efficiency of 13 different decision tree algorithms applied to photometric objects in the Sloan Digital Sky Survey Data Release Seven (SDSS DR7). Each algorithm is defined by a set of parameters which, when varied, produce different final classification trees. We extensively explore the parameter space of each algorithm, using the set of 884,126884,126 SDSS objects with spectroscopic data as the training set. The efficiency of star-galaxy separation is measured using the completeness function. We find that the Functional Tree algorithm (FT) yields the best results as measured by the mean completeness in two magnitude intervals: 14r2114\le r\le21 (85.285.2%) and r19r\ge19 (82.182.1%). We compare the performance of the tree generated with the optimal FT configuration to the classifications provided by the SDSS parametric classifier, 2DPHOT and Ball et al. (2006). We find that our FT classifier is comparable or better in completeness over the full magnitude range 15r2115\le r\le21, with much lower contamination than all but the Ball et al. classifier. At the faintest magnitudes (r>19r>19), our classifier is the only one able to maintain high completeness (>>80%) while still achieving low contamination (2.5\sim2.5%). Finally, we apply our FT classifier to separate stars from galaxies in the full set of 69,545,32669,545,326 SDSS photometric objects in the magnitude range 14r2114\le r\le21.Comment: Submitted to A

    Galaxy classification: deep learning on the OTELO and COSMOS databases

    Get PDF
    Context. The accurate classification of hundreds of thousands of galaxies observed in modern deep surveys is imperative if we want to understand the universe and its evolution. Aims. Here, we report the use of machine learning techniques to classify early- and late-type galaxies in the OTELO and COSMOS databases using optical and infrared photometry and available shape parameters: either the Sersic index or the concentration index. Methods. We used three classification methods for the OTELO database: 1) u-r color separation , 2) linear discriminant analysis using u-r and a shape parameter classification, and 3) a deep neural network using the r magnitude, several colors, and a shape parameter. We analyzed the performance of each method by sample bootstrapping and tested the performance of our neural network architecture using COSMOS data. Results. The accuracy achieved by the deep neural network is greater than that of the other classification methods, and it can also operate with missing data. Our neural network architecture is able to classify both OTELO and COSMOS datasets regardless of small differences in the photometric bands used in each catalog. Conclusions. In this study we show that the use of deep neural networks is a robust method to mine the cataloged dataComment: 20 pages, 10 tables, 14 figures, Astronomy and Astrophysics (in press

    First results from the LUCID-Timepix spacecraft payload onboard the TechDemoSat-1 satellite in Low Earth Orbit

    Full text link
    The Langton Ultimate Cosmic ray Intensity Detector (LUCID) is a payload onboard the satellite TechDemoSat-1, used to study the radiation environment in Low Earth Orbit (\sim635km). LUCID operated from 2014 to 2017, collecting over 2.1 million frames of radiation data from its five Timepix detectors on board. LUCID is one of the first uses of the Timepix detector technology in open space, with the data providing useful insight into the performance of this technology in new environments. It provides high-sensitivity imaging measurements of the mixed radiation field, with a wide dynamic range in terms of spectral response, particle type and direction. The data has been analysed using computing resources provided by GridPP, with a new machine learning algorithm that uses the Tensorflow framework. This algorithm provides a new approach to processing Medipix data, using a training set of human labelled tracks, providing greater particle classification accuracy than other algorithms. For managing the LUCID data, we have developed an online platform called Timepix Analysis Platform at School (TAPAS). This provides a swift and simple way for users to analyse data that they collect using Timepix detectors from both LUCID and other experiments. We also present some possible future uses of the LUCID data and Medipix detectors in space.Comment: Accepted for publication in Advances in Space Researc
    corecore