3,039 research outputs found

    On Acquisition and Analysis of a Dataset Comprising of Gait, Ear and Semantic data

    No full text
    In outdoor scenarios such as surveillance where there is very little control over the environments, complex computer vision algorithms are often required for analysis. However constrained environments, such as walkways in airports where the surroundings and the path taken by individuals can be controlled, provide an ideal application for such systems. Figure 1.1 depicts an idealised constrained environment. The path taken by the subject is restricted to a narrow path and once inside is in a volume where lighting and other conditions are controlled to facilitate biometric analysis. The ability to control the surroundings and the flow of people greatly simplifes the computer vision task, compared to typical unconstrained environments. Even though biometric datasets with greater than one hundred people are increasingly common, there is still very little known about the inter and intra-subject variation in many biometrics. This information is essential to estimate the recognition capability and limits of automatic recognition systems. In order to accurately estimate the inter- and the intra- class variance, substantially larger datasets are required [40]. Covariates such as facial expression, headwear, footwear type, surface type and carried items are attracting increasing attention; although considering the potentially large impact on an individuals biometrics, large trials need to be conducted to establish how much variance results. This chapter is the first description of the multibiometric data acquired using the University of Southampton's Multi-Biometric Tunnel [26, 37]; a biometric portal using automatic gait, face and ear recognition for identification purposes. The tunnel provides a constrained environment and is ideal for use in high throughput security scenarios and for the collection of large datasets. We describe the current state of data acquisition of face, gait, ear, and semantic data and present early results showing the quality and range of data that has been collected. The main novelties of this dataset in comparison with other multi-biometric datasets are: 1. gait data exists for multiple views and is synchronised, allowing 3D reconstruction and analysis; 2. the face data is a sequence of images allowing for face recognition in video; 3. the ear data is acquired in a relatively unconstrained environment, as a subject walks past; and 4. the semantic data is considerably more extensive than has been available previously. We shall aim to show the advantages of this new data in biometric analysis, though the scope for such analysis is considerably greater than time and space allows for here

    Micro-doppler-based in-home aided and unaided walking recognition with multiple radar and sonar systems

    Get PDF
    Published in IET Radar, Sonar and Navigation. Online first 21/06/2016.The potential for using micro-Doppler signatures as a basis for distinguishing between aided and unaided gaits is considered in this study for the purpose of characterising normal elderly gait and assessment of patient recovery. In particular, five different classes of mobility are considered: normal unaided walking, walking with a limp, walking using a cane or tripod, walking with a walker, and using a wheelchair. This presents a challenging classification problem as the differences in micro-Doppler for these activities can be quite slight. Within this context, the performance of four different radar and sonar systems – a 40 kHz sonar, a 5.8 GHz wireless pulsed Doppler radar mote, a 10 GHz X-band continuous wave (CW) radar, and a 24 GHz CW radar – is evaluated using a broad range of features. Performance improvements using feature selection is addressed as well as the impact on performance of sensor placement and potential occlusion due to household objects. Results show that nearly 80% correct classification can be achieved with 10 s observations from the 24 GHz CW radar, whereas 86% performance can be achieved with 5 s observations of sonar

    Zernike velocity moments for sequence-based description of moving features

    No full text
    The increasing interest in processing sequences of images motivates development of techniques for sequence-based object analysis and description. Accordingly, new velocity moments have been developed to allow a statistical description of both shape and associated motion through an image sequence. Through a generic framework motion information is determined using the established centralised moments, enabling statistical moments to be applied to motion based time series analysis. The translation invariant Cartesian velocity moments suffer from highly correlated descriptions due to their non-orthogonality. The new Zernike velocity moments overcome this by using orthogonal spatial descriptions through the proven orthogonal Zernike basis. Further, they are translation and scale invariant. To illustrate their benefits and application the Zernike velocity moments have been applied to gait recognition—an emergent biometric. Good recognition results have been achieved on multiple datasets using relatively few spatial and/or motion features and basic feature selection and classification techniques. The prime aim of this new technique is to allow the generation of statistical features which encode shape and motion information, with generic application capability. Applied performance analyses illustrate the properties of the Zernike velocity moments which exploit temporal correlation to improve a shape's description. It is demonstrated how the temporal correlation improves the performance of the descriptor under more generalised application scenarios, including reduced resolution imagery and occlusion

    Review of Person Re-identification Techniques

    Full text link
    Person re-identification across different surveillance cameras with disjoint fields of view has become one of the most interesting and challenging subjects in the area of intelligent video surveillance. Although several methods have been developed and proposed, certain limitations and unresolved issues remain. In all of the existing re-identification approaches, feature vectors are extracted from segmented still images or video frames. Different similarity or dissimilarity measures have been applied to these vectors. Some methods have used simple constant metrics, whereas others have utilised models to obtain optimised metrics. Some have created models based on local colour or texture information, and others have built models based on the gait of people. In general, the main objective of all these approaches is to achieve a higher-accuracy rate and lowercomputational costs. This study summarises several developments in recent literature and discusses the various available methods used in person re-identification. Specifically, their advantages and disadvantages are mentioned and compared.Comment: Published 201

    Automated Markerless Extraction of Walking People Using Deformable Contour Models

    No full text
    We develop a new automated markerless motion capture system for the analysis of walking people. We employ global evidence gathering techniques guided by biomechanical analysis to robustly extract articulated motion. This forms a basis for new deformable contour models, using local image cues to capture shape and motion at a more detailed level. We extend the greedy snake formulation to include temporal constraints and occlusion modelling, increasing the capability of this technique when dealing with cluttered and self-occluding extraction targets. This approach is evaluated on a large database of indoor and outdoor video data, demonstrating fast and autonomous motion capture for walking people

    Gait recognition based on shape and motion analysis of silhouette contours

    Get PDF
    This paper presents a three-phase gait recognition method that analyses the spatio-temporal shape and dynamic motion (STS-DM) characteristics of a human subject’s silhouettes to identify the subject in the presence of most of the challenging factors that affect existing gait recognition systems. In phase 1, phase-weighted magnitude spectra of the Fourier descriptor of the silhouette contours at ten phases of a gait period are used to analyse the spatio-temporal changes of the subject’s shape. A component-based Fourier descriptor based on anatomical studies of human body is used to achieve robustness against shape variations caused by all common types of small carrying conditions with folded hands, at the subject’s back and in upright position. In phase 2, a full-body shape and motion analysis is performed by fitting ellipses to contour segments of ten phases of a gait period and using a histogram matching with Bhattacharyya distance of parameters of the ellipses as dissimilarity scores. In phase 3, dynamic time warping is used to analyse the angular rotation pattern of the subject’s leading knee with a consideration of arm-swing over a gait period to achieve identification that is invariant to walking speed, limited clothing variations, hair style changes and shadows under feet. The match scores generated in the three phases are fused using weight-based score-level fusion for robust identification in the presence of missing and distorted frames, and occlusion in the scene. Experimental analyses on various publicly available data sets show that STS-DM outperforms several state-of-the-art gait recognition methods

    Pyramidal Fisher Motion for Multiview Gait Recognition

    Full text link
    The goal of this paper is to identify individuals by analyzing their gait. Instead of using binary silhouettes as input data (as done in many previous works) we propose and evaluate the use of motion descriptors based on densely sampled short-term trajectories. We take advantage of state-of-the-art people detectors to define custom spatial configurations of the descriptors around the target person. Thus, obtaining a pyramidal representation of the gait motion. The local motion features (described by the Divergence-Curl-Shear descriptor) extracted on the different spatial areas of the person are combined into a single high-level gait descriptor by using the Fisher Vector encoding. The proposed approach, coined Pyramidal Fisher Motion, is experimentally validated on the recent `AVA Multiview Gait' dataset. The results show that this new approach achieves promising results in the problem of gait recognition.Comment: Submitted to International Conference on Pattern Recognition, ICPR, 201
    corecore