2,064 research outputs found

    Extrinsic Methods for Coding and Dictionary Learning on Grassmann Manifolds

    Get PDF
    Sparsity-based representations have recently led to notable results in various visual recognition tasks. In a separate line of research, Riemannian manifolds have been shown useful for dealing with features and models that do not lie in Euclidean spaces. With the aim of building a bridge between the two realms, we address the problem of sparse coding and dictionary learning over the space of linear subspaces, which form Riemannian structures known as Grassmann manifolds. To this end, we propose to embed Grassmann manifolds into the space of symmetric matrices by an isometric mapping. This in turn enables us to extend two sparse coding schemes to Grassmann manifolds. Furthermore, we propose closed-form solutions for learning a Grassmann dictionary, atom by atom. Lastly, to handle non-linearity in data, we extend the proposed Grassmann sparse coding and dictionary learning algorithms through embedding into Hilbert spaces. Experiments on several classification tasks (gender recognition, gesture classification, scene analysis, face recognition, action recognition and dynamic texture classification) show that the proposed approaches achieve considerable improvements in discrimination accuracy, in comparison to state-of-the-art methods such as kernelized Affine Hull Method and graph-embedding Grassmann discriminant analysis.Comment: Appearing in International Journal of Computer Visio

    Volitional Control of Lower-limb Prosthesis with Vision-assisted Environmental Awareness

    Get PDF
    Early and reliable prediction of user’s intention to change locomotion mode or speed is critical for a smooth and natural lower limb prosthesis. Meanwhile, incorporation of explicit environmental feedback can facilitate context aware intelligent prosthesis which allows seamless operation in a variety of gait demands. This dissertation introduces environmental awareness through computer vision and enables early and accurate prediction of intention to start, stop or change speeds while walking. Electromyography (EMG), Electroencephalography (EEG), Inertial Measurement Unit (IMU), and Ground Reaction Force (GRF) sensors were used to predict intention to start, stop or increase walking speed. Furthermore, it was investigated whether external emotional music stimuli could enhance the predictive capability of intention prediction methodologies. Application of advanced machine learning and signal processing techniques on pre-movement EEG resulted in an intention prediction system with low latency, high sensitivity and low false positive detection. Affective analysis of EEG suggested that happy music stimuli significantly (

    Motion analysis report

    Get PDF
    Human motion analysis is the task of converting actual human movements into computer readable data. Such movement information may be obtained though active or passive sensing methods. Active methods include physical measuring devices such as goniometers on joints of the body, force plates, and manually operated sensors such as a Cybex dynamometer. Passive sensing de-couples the position measuring device from actual human contact. Passive sensors include Selspot scanning systems (since there is no mechanical connection between the subject's attached LEDs and the infrared sensing cameras), sonic (spark-based) three-dimensional digitizers, Polhemus six-dimensional tracking systems, and image processing systems based on multiple views and photogrammetric calculations

    Efficient Human Activity Recognition in Large Image and Video Databases

    Get PDF
    Vision-based human action recognition has attracted considerable interest in recent research for its applications to video surveillance, content-based search, healthcare, and interactive games. Most existing research deals with building informative feature descriptors, designing efficient and robust algorithms, proposing versatile and challenging datasets, and fusing multiple modalities. Often, these approaches build on certain conventions such as the use of motion cues to determine video descriptors, application of off-the-shelf classifiers, and single-factor classification of videos. In this thesis, we deal with important but overlooked issues such as efficiency, simplicity, and scalability of human activity recognition in different application scenarios: controlled video environment (e.g.~indoor surveillance), unconstrained videos (e.g.~YouTube), depth or skeletal data (e.g.~captured by Kinect), and person images (e.g.~Flicker). In particular, we are interested in answering questions like (a) is it possible to efficiently recognize human actions in controlled videos without temporal cues? (b) given that the large-scale unconstrained video data are often of high dimension low sample size (HDLSS) nature, how to efficiently recognize human actions in such data? (c) considering the rich 3D motion information available from depth or motion capture sensors, is it possible to recognize both the actions and the actors using only the motion dynamics of underlying activities? and (d) can motion information from monocular videos be used for automatically determining saliency regions for recognizing actions in still images

    Neuronal bases of structural coherence in contemporary dance observation

    Get PDF
    The neuronal processes underlying dance observation have been the focus of an increasing number of brain imaging studies over the past decade. However, the existing literature mainly dealt with effects of motor and visual expertise, whereas the neural and cognitive mechanisms that underlie the interpretation of dance choreographies remained unexplored. Hence, much attention has been given to the Action Observation Network (AON) whereas the role of other potentially relevant neuro-cognitive mechanisms such as mentalizing (theory of mind) or language (narrative comprehension) in dance understanding is yet to be elucidated. We report the results of an fMRI study where the structural coherence of short contemporary dance choreographies was manipulated parametrically using the same taped movement material. Our participants were all trained dancers. The whole-brain analysis argues that the interpretation of structurally coherent dance phrases involves a subpart (Superior Parietal) of the AON as well as mentalizing regions in the dorsomedial Prefrontal Cortex. An ROI analysis based on a similar study using linguistic materials (Pallier et al. 2011) suggests that structural processing in language and dance might share certain neural mechanisms

    Analysis of 3D human gait reconstructed with a depth camera and mirrors

    Full text link
    L'évaluation de la démarche humaine est l'une des composantes essentielles dans les soins de santé. Les systèmes à base de marqueurs avec plusieurs caméras sont largement utilisés pour faire cette analyse. Cependant, ces systèmes nécessitent généralement des équipements spécifiques à prix élevé et/ou des moyens de calcul intensif. Afin de réduire le coût de ces dispositifs, nous nous concentrons sur un système d'analyse de la marche qui utilise une seule caméra de profondeur. Le principe de notre travail est similaire aux systèmes multi-caméras, mais l'ensemble de caméras est remplacé par un seul capteur de profondeur et des miroirs. Chaque miroir dans notre configuration joue le rôle d'une caméra qui capture la scène sous un point de vue différent. Puisque nous n'utilisons qu'une seule caméra, il est ainsi possible d'éviter l'étape de synchronisation et également de réduire le coût de l'appareillage. Notre thèse peut être divisée en deux sections: reconstruction 3D et analyse de la marche. Le résultat de la première section est utilisé comme entrée de la seconde. Notre système pour la reconstruction 3D est constitué d'une caméra de profondeur et deux miroirs. Deux types de capteurs de profondeur, qui se distinguent sur la base du mécanisme d'estimation de profondeur, ont été utilisés dans nos travaux. Avec la technique de lumière structurée (SL) intégrée dans le capteur Kinect 1, nous effectuons la reconstruction 3D à partir des principes de l'optique géométrique. Pour augmenter le niveau des détails du modèle reconstruit en 3D, la Kinect 2 qui estime la profondeur par temps de vol (ToF), est ensuite utilisée pour l'acquisition d'images. Cependant, en raison de réflections multiples sur les miroirs, il se produit une distorsion de la profondeur dans notre système. Nous proposons donc une approche simple pour réduire cette distorsion avant d'appliquer les techniques d'optique géométrique pour reconstruire un nuage de points de l'objet 3D. Pour l'analyse de la démarche, nous proposons diverses alternatives centrées sur la normalité de la marche et la mesure de sa symétrie. Cela devrait être utile lors de traitements cliniques pour évaluer, par exemple, la récupération du patient après une intervention chirurgicale. Ces méthodes se composent d'approches avec ou sans modèle qui ont des inconvénients et avantages différents. Dans cette thèse, nous présentons 3 méthodes qui traitent directement les nuages de points reconstruits dans la section précédente. La première utilise la corrélation croisée des demi-corps gauche et droit pour évaluer la symétrie de la démarche, tandis que les deux autres methodes utilisent des autoencodeurs issus de l'apprentissage profond pour mesurer la normalité de la démarche.The problem of assessing human gaits has received a great attention in the literature since gait analysis is one of key components in healthcare. Marker-based and multi-camera systems are widely employed to deal with this problem. However, such systems usually require specific equipments with high price and/or high computational cost. In order to reduce the cost of devices, we focus on a system of gait analysis which employs only one depth sensor. The principle of our work is similar to multi-camera systems, but the collection of cameras is replaced by one depth sensor and mirrors. Each mirror in our setup plays the role of a camera which captures the scene at a different viewpoint. Since we use only one camera, the step of synchronization can thus be avoided and the cost of devices is also reduced. Our studies can be separated into two categories: 3D reconstruction and gait analysis. The result of the former category is used as the input of the latter one. Our system for 3D reconstruction is built with a depth camera and two mirrors. Two types of depth sensor, which are distinguished based on the scheme of depth estimation, have been employed in our works. With the structured light (SL) technique integrated into the Kinect 1, we perform the 3D reconstruction based on geometrical optics. In order to increase the level of details of the 3D reconstructed model, the Kinect 2 with time-of-flight (ToF) depth measurement is used for image acquisition instead of the previous generation. However, due to multiple reflections on the mirrors, depth distortion occurs in our setup. We thus propose a simple approach for reducing such distortion before applying geometrical optics to reconstruct a point cloud of the 3D object. For the task of gait analysis, we propose various alternative approaches focusing on the problem of gait normality/symmetry measurement. They are expected to be useful for clinical treatments such as monitoring patient's recovery after surgery. These methods consist of model-free and model-based approaches that have different cons and pros. In this dissertation, we present 3 methods that directly process point clouds reconstructed from the previous work. The first one uses cross-correlation of left and right half-bodies to assess gait symmetry while the other ones employ deep auto-encoders to measure gait normality

    Kinematic assessment for stroke patients in a stroke game and a daily activity recognition and assessment system

    Get PDF
    Stroke is the leading cause of serious, long-term disabilities among which deficits in motor abilities in arms or legs are most common. Those who suffer a stroke can recover through effective rehabilitation which is delicately personalized. To achieve the best personalization, it is essential for clinicians to monitor patients' health status and recovery progress accurately and consistently. Traditionally, rehabilitation involves patients performing exercises in clinics where clinicians oversee the procedure and evaluate patients' recovery progress. Following the in-clinic visits, additional home practices are tailored and assigned to patients. The in-clinic visits are important to evaluate recovery progress. The information collected can then help clinicians customize home practices for stroke patients. However, as the number of in-clinic sessions is limited by insurance policies, the recovery information collected in-clinic is often insufficient. Meanwhile, the home practice programs report low adherence rates based on historic data. Given that clinicians rely on patients to self-report adherence, the actual adherence rate could be even lower. Despite the limited feedback clinicians could receive, the measurement method is subjective as well. In practice, classic clinical scales are mostly used for assessing the qualities of movements and the recovery status of patients. However, these clinical scales are evaluated subjectively with only moderate inter-rater and intra-rater reliabilities. Taken together, clinicians lack a method to get sufficient and accurate feedback from patients, which limits the extent to which clinicians can personalize treatment plans. This work aims to solve this problem. To help clinicians obtain abundant health information regarding patients' recovery in an objective approach, I've developed a novel kinematic assessment toolchain that consists of two parts. The first part is a tool to evaluate stroke patients' motions collected in a rehabilitation game setting. This kinematic assessment tool utilizes body-tracking in a rehabilitation game. Specifically, a set of upper body assessment measures were proposed and calculated for assessing the movements using skeletal joint data. Statistical analysis was applied to evaluate the quality of upper body motions using the assessment outcomes. Second, to classify and quantify home activities for stroke patients objectively and accurately, I've developed DARAS, a daily activity recognition and assessment system that evaluates daily motions in a home setting. DARAS consists of three main components: daily action logger, action recognition part, and assessment part. The logger is implemented with a Foresite system to record daily activities using depth and skeletal joint data. Daily activity data in a realistic environment were collected from sixteen post-stroke participants. The collection period for each participant lasts three months. An ensemble network for activity recognition and temporal localization was developed to detect and segment the clinically relevant actions from the recorded data. The ensemble network fuses the prediction outputs from customized 3D Convolutional-De-Convolutional, customized Region Convolutional 3D network and a proposed Region Hierarchical Co-occurrence network which learns rich spatial-temporal features from either depth data or joint data. The per-frame precision and the per-action precision were 0.819 and 0.838, respectively, on the validation set. For the recognized actions, the kinematic assessments were performed using the skeletal joint data, as well as the longitudinal assessments. The results showed that, compared with non-stroke participants, stroke participants had slower hand movements, were less active, and tended to perform fewer hand manipulation actions. The assessment outcomes from the proposed toolchain help clinicians to provide more personalized rehabilitation plans that benefit patients.Includes bibliographical references

    Reduced sensitivity for visual textures affects judgments of shape-from-shading and step climbing behaviour in older adults

    Get PDF
    Falls on stairs are a major hazard for older adults. Visual decline in normal aging can affect step climbing ability, altering gait and reducing toe clearance. Here we show that a loss of fine-grained visual information associated with age can affect the perception of surface undulations in patterned surfaces. We go on to show that such cues affect the limb trajectories of young adults, but due to their lack of sensitivity, not that of older adults. Interestingly neither the perceived height of a step nor conscious awareness are altered by our visual manipulation but stepping behaviour is: suggesting that the influence of shape perception on stepping behaviour is via the unconscious, action-centred, dorsal visual pathway
    • …
    corecore