2,849 research outputs found

    On Using Gait in Forensic Biometrics

    No full text
    Given the continuing advances in gait biometrics, it appears prudent to investigate the translation of these techniques for forensic use. We address the question as to the confidence that might be given between any two such measurements. We use the locations of ankle, knee and hip to derive a measure of the match between walking subjects in image sequences. The Instantaneous Posture Match algorithm, using Harr templates, kinematics and anthropomorphic knowledge is used to determine their location. This is demonstrated using real CCTV recorded at Gatwick Airport, laboratory images from the multi-view CASIA-B dataset and an example of real scene of crime video. To access the measurement confidence we study the mean intra- and inter-match scores as a function of database size. These measures converge to constant and separate values, indicating that the match measure derived from individual comparisons is considerably smaller than the average match measure from a population

    Gait Recognition: Databases, Representations, and Applications

    No full text
    There has been considerable progress in automatic recognition of people by the way they walk since its inception almost 20 years ago: there is now a plethora of technique and data which continue to show that a person’s walking is indeed unique. Gait recognition is a behavioural biometric which is available even at a distance from a camera when other biometrics may be occluded, obscured or suffering from insufficient image resolution (e.g. a blurred face image or a face image occluded by mask). Since gait recognition does not require subject cooperation due to its non-invasive capturing process, it is expected to be applied for criminal investigation from CCTV footages in public and private spaces. This article introduces current progress, a research background, and basic approaches for gait recognition in the first three sections, and two important aspects of gait recognition, the gait databases and gait feature representations are described in the following sections.Publicly available gait databases are essential for benchmarking individual approaches, and such databases should contain a sufficient number of subjects as well as covariate factors to realize statistically reliable performance evaluation and also robust gait recognition. Gait recognition researchers have therefore built such useful gait databases which incorporate subject diversities and/or rich covariate factors.Gait feature representation is also an important aspect for effective and efficient gait recognition. We describe the two main approaches to representation: model-free (appearance-based) approaches and model-based approaches. In particular, silhouette-based model-free approaches predominate in recent studies and many have been proposed and are described in detail.Performance evaluation results of such recent gait feature representations on two of the publicly available gait databases are reported: USF Human ID with rich covariate factors such as views, surface, bag, shoes, time elapse; and OU-ISIR LP with more than 4,000 subjects. Since gait recognition is suitable for criminal investigation applications of the gait recognition to forensics are addressed with real criminal cases in the application section. Finally, several open problems of the gait recognition are discussed to show future research avenues of the gait recognition

    Can we ID from CCTV? Image quality in digital CCTV and face identification performance

    Get PDF
    CCTV is used for an increasing number Of purposes, and the new generation of digital systems can be tailored to serve a wide range of security requirements. However, configuration decisions are often made without considering specific task requirements, e.g. the video quality needed for reliable person identification. Our Study investigated the relationship between video quality and the ability of untrained viewers to identify faces from digital CCTV images. The task required 80 participants to identify 64 faces belonging to 4 different ethnicities. Participants compared face images taken from a high quality photographs and low quality CCTV stills, which were recorded at 4 different video quality bit rates (32, 52, 72 and 92 Kbps). We found that the number of correct identifications decreased by 12 (similar to 18%) as MPEG-4 quality decreased from 92 to 32 Kbps, and by 4 (similar to 6%) as Wavelet video quality decreased from 92 to 32 Kbps. To achieve reliable and effective face identification, we recommend that MPEG-4 CCTV systems should be used over Wavelet, and video quality should not be lowered below 52 Kbps during video compression. We discuss the practical implications of these results for security, and contribute a contextual methodology for assessing CCTV video quality

    Detecting acceleration for gait and crime scene analysis

    No full text
    Identifying criminals from CCTV footage is often a difficult task for crime investigations. The quality of CCTV is often low and criminals can cover their face and wear gloves (to withhold fingerprints) when committing a crime. Gait is the optimal choice in this circumstance since people can be recognised by their walking style, even at a distance with low resolution imagery. The location of the frame when the heel strikes the floor is essential for some gait analyses. We propose a new method to detect heel strikes: by radial acceleration which can also generalise to crime analysis. The frame and position of the heel strikes can be estimated by the quantity and the circle centres of radial acceleration, derived from the optical flow (using DeepFlow). Experimental results show high detection rate on two different gait databases and good robustness under different kinds of noise. We analysedetection of heel strikes to show robustness then we analyse crime scenes to show generalisation capability since violent crime often involves much acceleration. As such, we provide a new basis to a baseline technique in crime scene analysis

    Predictive biometrics: A review and analysis of predicting personal characteristics from biometric data

    Get PDF
    Interest in the exploitation of soft biometrics information has continued to develop over the last decade or so. In comparison with traditional biometrics, which focuses principally on person identification, the idea of soft biometrics processing is to study the utilisation of more general information regarding a system user, which is not necessarily unique. There are increasing indications that this type of data will have great value in providing complementary information for user authentication. However, the authors have also seen a growing interest in broadening the predictive capabilities of biometric data, encompassing both easily definable characteristics such as subject age and, most recently, `higher level' characteristics such as emotional or mental states. This study will present a selective review of the predictive capabilities, in the widest sense, of biometric data processing, providing an analysis of the key issues still adequately to be addressed if this concept of predictive biometrics is to be fully exploited in the future

    Biometrics in forensic science: challenges, lessons and new technologies

    Get PDF
    Biometrics has historically found its natural mate in Forensics. The first applications found in the literature and over cited so many times, are related to biometric measurements for the identification of multiple offenders from some of their biometric and anthropometric characteristics (tenprint cards) and individualization of offender from traces found on crime-scenes (e.g. fingermarks, earmarks, bitemarks, DNA). From sir Francis Galton, to the introduction of AFIS systems in the scientific laboratories of police departments, Biometrics and Forensics have been "dating" with alternate results and outcomes. As a matter of facts there are many technologies developed under the "Biometrics umbrella" which may be optimised to better impact several Forensic scenarios and criminal investigations. At the same time, there is an almost endless list of open problems and processes in Forensics which may benefit from the introduction of tailored Biometric technologies. Joining the two disciplines, on a proper scientific ground, may only result in the success for both fields, as well as a tangible benefit for the society. A number of Forensic processes may involve Biometric-related technologies, among them: Evidence evaluation, Forensic investigation, Forensic Intelligence, Surveillance, Forensic ID management and Verification.\ud The COST Action IC1106 funded by the European Commission, is trying to better understand how Biometric and Forensics synergies can be exploited within a pan-European scientific alliance which extends its scope to partners from USA, China and Australia.\ud Several results have been already accomplished pursuing research in this direction. Notably the studies in 2D and 3D face recognition have been gradually applied to the forensic investigation process. In this paper a few solutions will be presented to match 3D face shapes along with some experimental results

    Biometrics: Weighing Convenience and National Security against Your Privacy

    Get PDF
    The biometric identifier relies on an individual\u27s unique biological information such as a hand, iris, fingerprint, facial or voice print. When used for verification purposes, a one-to-one match is generated in under one second. Biometric technology can substantially improve national security by identifying and verifying individuals in a number of different contexts, providing security in ways that exceed current identification technology and limiting access to areas where security breaches are especially high, such as airport tarmacs and critical infrastructure facilities. At the same time, a legitimate public concern exists concerning the misuse of biometric technology to invade or violate personal privacy

    Forensic gait analysis — Morphometric assessment from surveillance footage

    Get PDF
    © 2019 Elsevier B.V. Following the technological rise of surveillance cameras and their subsequent proliferation in public places, the use of information gathered by such means for investigative and evaluative purposes sparked a large interest in the forensic community and within policing scenarios. In particular, it is suggested that analysis of the body, especially the assessment of gait characteristics, can provide useful information to aid the investigation. This paper discusses the influences upon gait to mitigate some of the limitations of surveillance footage, including those due to the varying anatomical differences between individuals. Furthermore, the differences between various techniques applied to assess gait are discussed, including biometric gait recognition, forensic gait analysis, tracking technology, and marker technology. This review article discusses the limitations of the current methods for assessment of gait; exposing gaps within the literature in regard to various influences impacting upon the gait cycle. Furthermore, it suggests a ‘morphometric’ technique to enhance the available procedures to potentially facilitate the development of standardised protocols with supporting statistics and database. This in turn will provide meaningful information to forensic investigation, intelligence-gathering processes, and potentially as an additional method of forensic evaluation of evidence
    • 

    corecore