137 research outputs found

    Advances in Neural Signal Processing

    Get PDF
    Neural signal processing is a specialized area of signal processing aimed at extracting information or decoding intent from neural signals recorded from the central or peripheral nervous system. This has significant applications in the areas of neuroscience and neural engineering. These applications are famously known in the area of brain–machine interfaces. This book presents recent advances in this flourishing field of neural signal processing with demonstrative applications

    Advances in Neural Signal Processing

    Get PDF
    Neural signal processing is a specialized area of signal processing aimed at extracting information or decoding intent from neural signals recorded from the central or peripheral nervous system. This has significant applications in the areas of neuroscience and neural engineering. These applications are famously known in the area of brain–machine interfaces. This book presents recent advances in this flourishing field of neural signal processing with demonstrative applications

    Human Gait Analysis in Neurodegenerative Diseases: a Review

    Get PDF
    This paper reviews the recent literature on technologies and methodologies for quantitative human gait analysis in the context of neurodegnerative diseases. The use of technological instruments can be of great support in both clinical diagnosis and severity assessment of these pathologies. In this paper, sensors, features and processing methodologies have been reviewed in order to provide a highly consistent work that explores the issues related to gait analysis. First, the phases of the human gait cycle are briefly explained, along with some non-normal gait patterns (gait abnormalities) typical of some neurodegenerative diseases. The work continues with a survey on the publicly available datasets principally used for comparing results. Then the paper reports the most common processing techniques for both feature selection and extraction and for classification and clustering. Finally, a conclusive discussion on current open problems and future directions is outlined

    Advances in Neural Signal Processing

    Get PDF
    Neural signal processing is a specialized area of signal processing aimed at extracting information or decoding intent from neural signals recorded from the central or peripheral nervous system. This has significant applications in the areas of neuroscience and neural engineering. These applications are famously known in the area of brain–machine interfaces. This book presents recent advances in this flourishing field of neural signal processing with demonstrative applications

    Machine Learning for Gait Classification

    Get PDF
    Machine learning is a powerful tool for making predictions and has been widely used for solving various classification problems in last decades. As one of important applications of machine learning, gait classification focuses on distinguishing different gait patterns by investigating the quality of gait of individuals and categorizing them as belonging to particular classes. The most studied gait pattern classes are the normal gait patterns of healthy people, i.e., gait of people who do not have any gait disability caused by an illness or an injury, and the pathological gait of patients suffering from illnesses which cause gait disorders such as neurodegenerative diseases (NDDs). There has been significant research work trying to solve the gait classification problems using advanced machine learning techniques, as the results may be beneficial for the early detection of underlined NDDs and for the monitoring of the gait rehabilitation progress. Despite the huge development in the field of gait analysis and classification, there are still a number of challenges open to further research. One challenge is the optimization of applied machine learning strategies to achieve better classification results. Another challenge is to solve gait classification problems even in the case when only limited amount of data are available. Further, a challenge is the development of machine learning-based methods that could provide more precise results to evaluate the level of gait quality or gait disorder, in contrast of just classifying gait pattern as belonging to healthy or pathological gait. The focus of this thesis is on the development, implementation and evaluation of a novel and reliable solution for the complex gait classification problems by addressing the current challenges. This solution is presented as a classification framework that can be applied to different types of gait signals, such as lower-limbs joint angle signals, trunk acceleration signals, and stride interval signals. Developed framework incorporates a hybrid solution which combines two models to enhance the classification performance. In order to provide a large number of samples for training the models, a sample generation method is developed which could segments the gait signals into smaller fragments. Classification is firstly performed on the data sample level, and then the results are utilized to generate the subject-level results using a majority voting scheme. Besides the class labels, a confidence score is computed to interpret the level of gait quality. In order to significantly improve the gait classification performances, in this thesis a novel feature extraction methods are also proposed using statistical methods, as well as machine learning approaches. Gaussian mixture model (GMM), least square regression, and k-nearest neighbors (kNN) are employed to provide additional significant features. Promising classification results are achieved using the proposed framework and the extracted features. The framework is ultimately applied to the management of patients and their rehabilitation, and is proved to be feasible in many clinical scenarios, such as the evaluation of medication effect on Parkinsona s disease (PD) patientsa gait, the long-term gait monitoring of the hereditary spastic paraplegia (HSP) patient under physical therapy

    Early Detection of Neurodegenerative Diseases from Bio-Signals: A Machine Learning Approach

    Get PDF
    Given the fact that people, especially in advanced countries, are living longer due to the advancements in medical sciences which resulted in the prevalence of age-related diseases like Alzheimer’s and dementia. The occurrence of such diseases continues to increase and ultimately the cost of caring for these groups will become unsustainable. Addressing this issue has reached a critical point and failing to provide a strategic way forward will negatively affect patients, national health services and society as a whole.Three distinctive development stages of neurodegenerative diseases (Retrogenesis, Cognitive Impairment and Gait Impairment) motivated me to divide this research work into two main parts. To fully achieve the purpose of early detection/diagnosis, I aimed at analysing the gait signals as well as EEG signals, separately, as both of these signals severely get affected by any neurological disease.The first part of this research work focuses on the discrimination analysis of gait signals of different neurodegenerative diseases (Parkinson’s, Huntington, and Amyotrophic Lateral Sclerosis) and also of control subjects. This involves relevant feature extraction, solving the issues of imbalanced datasets and missing entries and lastly classification of multiclass datasets. For the classification and discrimination of gait signals, eleven (11) classifiers are selected representing linear, non-linear and Bayes normal classification techniques. Results revealed that three classifiers have provided us with higher accuracy rate which are UDC, LDC and PARZEN with 65%, 62.5% and 60% accuracy, respectively. Further, I proposed and developed a new classifier fusion strategy that combined classification algorithms with combining rules (voting, product, mean, median, maximum and minimum). It generates better results and classifies subjects more accurately than base-level classifiers.The last part of this research work is based on the rectification and computation of EEG signals of mild Alzheimer’s disease patients and control subjects. To detect the perturbation in EEG signals of Alzheimer’s patients, three neural synchrony measurement techniques; phase synchrony, magnitude squared coherence and cross correlation are applied on three different databases of mild Alzheimer’s disease (MiAD) patients and healthy subjects. I have compared right and left temporal parts of brain with rest of the brain area (frontal, central and occipital), as temporal regions are relatively the first ones to be affected by Alzheimer’s. Two novel methods are proposed to compute the neural synchronization of the brain; Average synchrony measure and PCA based synchrony measure. These techniques are evaluated for three different datasets of MiAD patients and control subjects using the Wilcoxon ranksum test (Mann-Whitney U test). Results demonstrated that PCA based method helped us to find more significant features that can be used as biomarkers for the early diagnosis of Alzheimer’s

    Toward Unobtrusive In-home Gait Analysis Based on Radar Micro-Doppler Signatures

    Full text link
    Objective: In this paper, we demonstrate the applicability of radar for gait classification with application to home security, medical diagnosis, rehabilitation and assisted living. Aiming at identifying changes in gait patterns based on radar micro-Doppler signatures, this work is concerned with solving the intra motion category classification problem of gait recognition. Methods: New gait classification approaches utilizing physical features, subspace features and sum-of-harmonics modeling are presented and their performances are evaluated using experimental K-band radar data of four test subjects. Five different gait classes are considered for each person, including normal, pathological and assisted walks. Results: The proposed approaches are shown to outperform existing methods for radar-based gait recognition which utilize physical features from the cadence-velocity data representation domain as in this paper. The analyzed gait classes are correctly identified with an average accuracy of 93.8%, where a classification rate of 98.5% is achieved for a single gait class. When applied to new data of another individual a classification accuracy on the order of 80% can be expected. Conclusion: Radar micro-Doppler signatures and their Fourier transforms are well suited to capture changes in gait. Five different walking styles are recognized with high accuracy. Significance: Radar-based sensing of human gait is an emerging technology with multi-faceted applications in security and health care industries. We show that radar, as a contact-less sensing technology, can supplement existing gait diagnostic tools with respect to long-term monitoring and reproducibility of the examinations.Comment: 11 pages, 6 figure

    The Phenomenology, Pathophysiology and Progression of the Core Features of Lewy Body Dementia

    Get PDF
    Lewy body dementias – Dementia with Lewy bodies (DLB) and Parkinson’s disease dementia (PDD) - are disabling neurodegenerative conditions defined pathologically by the presence of intraneuronal α-synuclein rich aggregates (‘Lewy bodies’ and ‘Lewy neurites’). These disorders are characterized by a set of ‘core’ clinical features, namely cognitive fluctuations, visual hallucinations, motor parkinsonism, and most recently added, REM sleep behaviour disorder. These features are central to the diagnosis of Lewy bodies dementias (especially DLB) and discriminate them from other neurodegenerative disorders. Despite decades of research, the etiopathogenesis underlying Lewy body disorders is poorly understood. This accounts for the relative lack of objective biomarkers and both symptomatic and disease modifying therapies. The present thesis comprises a series of investigations that seeks to understand the phenomenology, pathophysiology, and clinical progression of Lewy body dementias through focus on each of the core clinical features. Systematic review and empiric studies are organized under the respective headings of cognitive fluctuations, visual hallucinations, REM sleep behaviour disorder, motor features, interrelationships, and clinical progression of the core features. Novel clinical and pathophysiological insights are obtained which have implications for the prediction and diagnosis of core features, the development of new objective biomarkers, and clinical endpoints of disease progression. From these studies, a shared pathophysiological basis for the core features is postulated and potential avenues for future directions are highlighted, focusing on replication and validation of new biomarkers and clinical measures, discovery of new biomarkers and mechanisms, and translation to prodromal and patient cohorts

    Understanding the temporal dynamics of visual hallucinations in Parkinson's Disease with dementia

    Get PDF
    PhD ThesisBackground Integrative models of visual hallucinations (VH) posit that the symptom requires disruptions to both bottom-up and top-down visual processing. Although many lines of evidence point to a mixture of aberrant processing and disconnection between key nodes in the visual system, in particular the dorsal and ventral attention networks, there have been no attempts to understand the dynamic behaviour of these systems in Parkinson’s disease with dementia (PDD) with VH. Aims The primary aim of this thesis was to explore the correlates of synaptic communication in the visual system and how spatio-temporal dynamics of the early visual system are altered in relation to the severity of VH. The secondary aim was to help understand the balance between the contributions of bottom-up and top-down processing for the experience of VH in PDD. Methods An assortment of investigative approaches, including resting state electroencephalography (EEG), visual evoked potentials (VEPs), and concurrent EEG and transcranial magnetic stimulation (TMS) were applied in a group of PDD patients with a range of VH severities (n = 26) and contrasted with a group of age matched healthy controls (n = 17). Results Latency of the N1 component was similar between groups, suggesting intact transfer between the retina and the cortex. However, PDD patients had an inherent reduction in the amplitude of the VEP components and displayed a pattern of declining P1 latencies in association with more frequent and severe VH. Evoked potentials arising from TMS of the striate cortex were similar in amplitude and latency for each of the components between PDD and controls. However, inter-component activity at several stages was altered in the PDD group, whilst the frequency and severity of VH was positively associated with the amplitudes of several components in the occipital and parietal regions. Finally, attentional modulation as measured by the alpha-band reactivity was also compromised in PDD patients. iv Conclusions These data provide neurophysiological evidence that both early bottom-up and top-down dysfunctions of the visual system occur in PDD patients who hallucinate, thus supporting integrative models of VH.National Institute for Health Research (NIHR) Biomedical Research Unit (BRU)

    Novel functional imaging approaches for investigating brain plasticity in multiple sclerosis and Parkinson\u2019s disease: from research to clinical applications

    Get PDF
    Neuronal plasticity, as the capacity of the brain to respond to external demands or to injury, has emerged as a crucial mechanism to preserve, at least in part, an adequate behavioral functioning after an injury and as the process underlying improvements in disability during rehabilitation. Brain plasticity can be detected with both structural and functional magnetic resonance imaging and more and more processing techniques have been developed to better capture the occurring changes and to better define the potential plasticity. Gait and balance are affected in patients with multiple sclerosis since the early stages of the disease with sensory deficits playing a major role in determining both balance and gait impairment. Moreover, gait disorders are one of the major causes of disability in patients with Parkinson\u2019s disease, in particular if suffering from freezing of gait. With this work we aimed at i) investigating the functional reorganization occurring in multiple sclerosis at both early and late stages of the disease, ii) characterizing the functional pattern underlying sensory impairment in patients with early multiple sclerosis and iii) verifying the neural correlates of action observation of gait in patients with Parkinson\u2019s disease. These different studies fit into a larger framework where neuroimaging techniques, in particular functional imaging, would support the clinicians in identifying tailored rehabilitation treatments and the patients who would better benefit from them. We found that patients with early multiple sclerosis showed a higher brain functional flexibility, expressed in terms of blood oxygen level dependent signal variability, which correlated to clinical disability, representing a possible compensatory mechanism. In patients with early multiple sclerosis we also observed subtle position sense deficits, not detectable with a standard neurological examination, and which affected still standing balance. Moreover, these deficits were related to a structural damage at the level of the corpus callosum and to functional activity patterns mainly involving the frontoparietal regions. On the contrary, patients with multiple sclerosis at the progressive stages presented with more subtle changes in the resting state functional connectivity which, nonetheless, were related to clinical disability. Lastly, the presence of freezing of gait in patients with Parkinson disease influenced the neural activation underpinning the action observation of walking. Altogether, these results offer an better insight into the pathophysiological mechanisms underlying disability in patients with multiple sclerosis and constitute a groundwork for the enhancement of rehabilitation protocols to improve gait and balance in both multiple sclerosis and Parkinson\u2019s disease, supporting the embracing of new strategies such as sensory integration and action observation training
    • …
    corecore