1,957 research outputs found

    Persistent topology for natural data analysis - A survey

    Full text link
    Natural data offer a hard challenge to data analysis. One set of tools is being developed by several teams to face this difficult task: Persistent topology. After a brief introduction to this theory, some applications to the analysis and classification of cells, lesions, music pieces, gait, oil and gas reservoirs, cyclones, galaxies, bones, brain connections, languages, handwritten and gestured letters are shown

    Explaining the differences of gait patterns between high and low-mileage runners with machine learning

    Get PDF
    Running gait patterns have implications for revealing the causes of injuries between higher-mileage runners and low-mileage runners. However, there is limited research on the possible relationships between running gait patterns and weekly running mileages. In recent years, machine learning algorithms have been used for pattern recognition and classification of gait features to emphasize the uniqueness of gait patterns. However, they all have a representative problem of being a black box that often lacks the interpretability of the predicted results of the classifier. Therefore, this study was conducted using a Deep Neural Network (DNN) model and Layer-wise Relevance Propagation (LRP) technology to investigate the differences in running gait patterns between higher-mileage runners and low-mileage runners. It was found that the ankle and knee provide considerable information to recognize gait features, especially in the sagittal and transverse planes. This may be the reason why high-mileage and low-mileage runners have different injury patterns due to their different gait patterns. The early stages of stance are very important in gait pattern recognition because the pattern contains effective information related to gait. The findings of the study noted that LRP completes a feasible interpretation of the predicted results of the model, thus providing more interesting insights and more effective information for analyzing gait patterns

    Prediction of Lower Extremity Movement by Cyclograms

    Get PDF
    Human gait is nowadays undergoing extensive analysis. Predictions of leg movements can be used for orthosis and prosthesis programming, and also for rehabilitation. Our work focuses on predicting human gait with the use of angle-angle diagrams, also called cyclograms. In conjunction with artificial intelligence, cyclograms offer a wide area of medical applications. We have identified cyclogram characteristics such as the slope and the area of the cyclogram for a neural network learning algorithm. Neural networks learned by cyclograms offer wide applications in prosthesis control systems

    Radar and RGB-depth sensors for fall detection: a review

    Get PDF
    This paper reviews recent works in the literature on the use of systems based on radar and RGB-Depth (RGB-D) sensors for fall detection, and discusses outstanding research challenges and trends related to this research field. Systems to detect reliably fall events and promptly alert carers and first responders have gained significant interest in the past few years in order to address the societal issue of an increasing number of elderly people living alone, with the associated risk of them falling and the consequences in terms of health treatments, reduced well-being, and costs. The interest in radar and RGB-D sensors is related to their capability to enable contactless and non-intrusive monitoring, which is an advantage for practical deployment and users’ acceptance and compliance, compared with other sensor technologies, such as video-cameras, or wearables. Furthermore, the possibility of combining and fusing information from The heterogeneous types of sensors is expected to improve the overall performance of practical fall detection systems. Researchers from different fields can benefit from multidisciplinary knowledge and awareness of the latest developments in radar and RGB-D sensors that this paper is discussing

    Indirect Estimation of Vertical Ground Reaction Force from a Body-Mounted INS/GPS Using Machine Learning

    Get PDF
    Vertical ground reaction force(vGRF)can be measured by forceplates or instrumented treadmills, but their application is limited to indoor environments. Insoles remove this restriction but suffer from low durability (several hundred hours). Therefore, interest in the indirect estimation of vGRF using inertial measurement units and machine learning techniques has increased. This paper presents a methodology for indirectly estimating vGRF and other features used in gait analysis from measurements of a wearable GPS-aided inertial navigation system (INS/GPS) device. A set of 27 features was extracted from the INS/GPS data. Feature analysis showed that six of these features suffice to provide precise estimates of 11 different gait parameters. Bagged ensembles of regression trees were then trained and used for predicting gait parameters for a dataset from the test subject from whom the training data were collected and for a dataset from a subject for whom no training data were available. The prediction accuracies for the latter were significantly worse than for the first subject but still sufficiently good. K-nearest neighbor (KNN) and long short-term memory (LSTM) neural networks were then used for predicting vGRF and ground contact times. The KNN yielded a lower normalized root mean square error than the neural network for vGRF predictions but cannot detect new patterns in force curves.publishedVersionPeer reviewe

    Transfer Learning Using Infrared and Optical Full Motion Video Data for Gender Classification

    Get PDF
    This work is a review and extension of our ongoing research in human recognition analysis using multimodality motion sensor data. We review our work on hand crafted feature engineering for motion capture skeleton (MoCap) data, from the Air Force Research Lab for human gender followed by depth scan based skeleton extraction using LIDAR data from the Army Night Vision Lab for person identification. We then build on these works to demonstrate a transfer learning sensor fusion approach for using the larger MoCap and smaller LIDAR data for gender classification
    corecore