323 research outputs found

    Using Wavelets for Gait and Arm Swing Analysis

    Get PDF
    The human walking pattern can be affected by different factors such as accidents, transplants, or diseases, like Parkinson’s disease, which affects motor and mental functions. In motor terms, this disease can generate alterations such as tremors, festination, rigidity, unbalance, slowness, and freezing of gait. Additionally, it is estimated that for the year 2040, the number of people with Parkinson’s in the world will be between 12.9 and 14.2 million people. These alarming figures make Parkinson’s disease an important focus of attention. In this chapter, we present contributions that suggest wavelet techniques as a useful tool to perform a gait and arm swing analysis; this represents an important approximation that can contribute to describe and differentiate people with Parkinson’s disease in early stages of the disease

    Gait and Locomotion Analysis for Tribological Applications

    Get PDF

    An Assessment of Fractal Characterization Methods for 1/f Processes with Application to the Analysis of Stride Interval Time Series

    Get PDF
    The time evolution and complex interactions of many nonlinear systems, such as in the human body, result in fractal types of parameter outcomes that exhibit self similarity over long time scales by a power law in the frequency spectrum S(f) = 1/f. The scaling exponent can be interpreted as the degree of fractal characteristic and thus as a "biomarker" of relative health and decline. This thesis presents a thorough numerical analysis of fractal characterization techniques with specific consideration given to experimentally measured gait stride interval time series. The ideal fractal signals generated in the numerical analysis are constrained under varying lengths and biases indicative of a range of physiologically conceivable fractal signals. This analysis is to complement previous investigations of fractal characteristics in healthy and pathological gait stride interval time series, with which this study is compared. The comparative numerical analysis and experimental applications provide a thorough basis for determining an appropriate and robust method for measuring and comparing a physiologically meaningful biomarker, the spectral index. In consideration of the constraints in applications, the significant drawbacks of proposed time domain methods are noted, and it is concluded that time-scale domain wavelet methods can provide a reasonably consistent and accurate biomarker technique for these fractal time series

    Detection of Different Levels of Multiple Sclerosis by Assessing Nonlinear Characteristics of Posture

    Get PDF
    Background: Multiple sclerosis (MS) is a chronic disorder of the central nervous system that affects various parts of the brain and the spinal cord, leading to interruptions of the nervous, defense and movement systems, which usually affect balance and gait. Considering that the diagnosis of MS and its classification is a function of the expertise of the physician, the use of creative methods can help physicians to diagnose and classify different levels of the disease.Methods: The primary objective of the present study was to detect different levels of MS disease based on the nonlinear evaluation of body features. To do so, we studied eight MS patients and posture information of these patients such as the center of pressure (COP) were recorded at different levels with various degrees of Expanded Disability Status Scale (EDSS) by a motion analyzer device, while subjects were standing on the force plate in the eyes-opened and eyes-closed modes. After extracting and validating features that are used to assess posture disorders and explain the balancing behavior, the support vector machine (SVM) was employed to classify different levels of disease. Using the Spearman correlation test, each feature evaluated by the EDSS test.Results: The features obtained from Higuchi’s fractal dimensional algorithm in both anterior-posterior and mediolateral directions of the COP, which were significant (P < 0.05) were selected and provided to SVM and neural network for classification of different levels. It found that SVM outperformed neural network and was able to carry out the classification with the accuracy of 90.7%.Conclusion: As an intelligent method, the non-linear evaluation of body features such as dimensional fractal analysis of the COP can help physicians diagnose different levels of MS with greater precision

    Gait analysis under the lens of statistical physics

    Get PDF
    Human gait; Irreversibility; Multi-fractal analysisMarcha humana; Irreversibilidad; Análisis multifractalMarxa humana; Irreversibilitat; Anàlisi multifractalHuman gait is a fundamental activity, essential for the survival of the individual, and an emergent property of the interactions between complex physical and cognitive processes. Gait is altered in many situations, due both to external constraints, as e.g. paced walk, and to physical and neurological pathologies. Its study is therefore important as a way of improving the quality of life of patients, but also as a door to understanding the inner working of the human nervous system. In this review we explore how four statistical physics concepts have been used to characterise normal and pathological gait: entropy, maximum Lyapunov exponent, multi-fractal analysis and irreversibility. Beyond some basic definitions, we present the main results that have been obtained in this field, as well as a discussion of the main limitations researchers have dealt and will have to deal with. We finally conclude with some biomedical considerations and avenues for further development.This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 851255). M.Z. and F.O. acknowledges the Spanish State Research Agency through Grant MDM-2017–0711 funded by MCIN/AEI/10.13039/501100011033. Authors acknowledge support from the Escuela Universitaria de Fisioterapia de la ONCE
    • …
    corecore