43,542 research outputs found

    A Review of Chinese Academy of Sciences (CASIA) Gait Database As a Human Gait Recognition Dataset

    Get PDF
    Human Gait as the recognition object is the famous biometrics system recently. Many researchers had focused this subject to consider for a new recognition system. One of the important advantage in this recognition compare to other is it does not require observed subject’s attention and cooperation. There are many human gait datasets created within the last 10 years. Some databases that are widely used are University Of South Florida (USF) Gait Dataset, Chinese Academy of Sciences (CASIA) Gait Dataset, and Southampton University (SOTON) Gait Dataset. This paper will analyze the CASIA Gait Dataset in order to see their characteristics. There are 2 pre-processing subsystems; model based and model free approach. We will use 2D Discrete Wavelet Transform (DWT). We select Haar wavelets to reduce and extract the feature

    Covariate Analysis for View-point Independent Gait Recognition

    No full text
    Many studies have shown that gait can be deployed as a biometric. Few of these have addressed the effects of view-point and covariate factors on the recognition process. We describe the first analysis which combines view-point invariance for gait recognition which is based on a model-based pose estimation approach from a single un-calibrated camera. A set of experiments are carried out to explore how such factors including clothing, carrying conditions and view-point can affect the identification process using gait. Based on a covariate-based probe dataset of over 270 samples, a recognition rate of 73.4% is achieved using the KNN classifier. This confirms that people identification using dynamic gait features is still perceivable with better recognition rate even under the different covariate factors. As such, this is an important step in translating research from the laboratory to a surveillance environment

    On using gait to enhance frontal face extraction

    No full text
    Visual surveillance finds increasing deployment formonitoring urban environments. Operators need to be able to determine identity from surveillance images and often use face recognition for this purpose. In surveillance environments, it is necessary to handle pose variation of the human head, low frame rate, and low resolution input images. We describe the first use of gait to enable face acquisition and recognition, by analysis of 3-D head motion and gait trajectory, with super-resolution analysis. We use region- and distance-based refinement of head pose estimation. We develop a direct mapping to relate the 2-D image with a 3-D model. In gait trajectory analysis, we model the looming effect so as to obtain the correct face region. Based on head position and the gait trajectory, we can reconstruct high-quality frontal face images which are demonstrated to be suitable for face recognition. The contributions of this research include the construction of a 3-D model for pose estimation from planar imagery and the first use of gait information to enhance the face extraction process allowing for deployment in surveillance scenario

    Gait recognition and understanding based on hierarchical temporal memory using 3D gait semantic folding

    Get PDF
    Gait recognition and understanding systems have shown a wide-ranging application prospect. However, their use of unstructured data from image and video has affected their performance, e.g., they are easily influenced by multi-views, occlusion, clothes, and object carrying conditions. This paper addresses these problems using a realistic 3-dimensional (3D) human structural data and sequential pattern learning framework with top-down attention modulating mechanism based on Hierarchical Temporal Memory (HTM). First, an accurate 2-dimensional (2D) to 3D human body pose and shape semantic parameters estimation method is proposed, which exploits the advantages of an instance-level body parsing model and a virtual dressing method. Second, by using gait semantic folding, the estimated body parameters are encoded using a sparse 2D matrix to construct the structural gait semantic image. In order to achieve time-based gait recognition, an HTM Network is constructed to obtain the sequence-level gait sparse distribution representations (SL-GSDRs). A top-down attention mechanism is introduced to deal with various conditions including multi-views by refining the SL-GSDRs, according to prior knowledge. The proposed gait learning model not only aids gait recognition tasks to overcome the difficulties in real application scenarios but also provides the structured gait semantic images for visual cognition. Experimental analyses on CMU MoBo, CASIA B, TUM-IITKGP, and KY4D datasets show a significant performance gain in terms of accuracy and robustness

    Gait Recognition: Databases, Representations, and Applications

    No full text
    There has been considerable progress in automatic recognition of people by the way they walk since its inception almost 20 years ago: there is now a plethora of technique and data which continue to show that a person’s walking is indeed unique. Gait recognition is a behavioural biometric which is available even at a distance from a camera when other biometrics may be occluded, obscured or suffering from insufficient image resolution (e.g. a blurred face image or a face image occluded by mask). Since gait recognition does not require subject cooperation due to its non-invasive capturing process, it is expected to be applied for criminal investigation from CCTV footages in public and private spaces. This article introduces current progress, a research background, and basic approaches for gait recognition in the first three sections, and two important aspects of gait recognition, the gait databases and gait feature representations are described in the following sections.Publicly available gait databases are essential for benchmarking individual approaches, and such databases should contain a sufficient number of subjects as well as covariate factors to realize statistically reliable performance evaluation and also robust gait recognition. Gait recognition researchers have therefore built such useful gait databases which incorporate subject diversities and/or rich covariate factors.Gait feature representation is also an important aspect for effective and efficient gait recognition. We describe the two main approaches to representation: model-free (appearance-based) approaches and model-based approaches. In particular, silhouette-based model-free approaches predominate in recent studies and many have been proposed and are described in detail.Performance evaluation results of such recent gait feature representations on two of the publicly available gait databases are reported: USF Human ID with rich covariate factors such as views, surface, bag, shoes, time elapse; and OU-ISIR LP with more than 4,000 subjects. Since gait recognition is suitable for criminal investigation applications of the gait recognition to forensics are addressed with real criminal cases in the application section. Finally, several open problems of the gait recognition are discussed to show future research avenues of the gait recognition
    • 

    corecore