92 research outputs found

    Reinforcement Learning Algorithms in Humanoid Robotics

    Get PDF

    Locomotion training of legged robots using hybrid machine learning techniques

    Get PDF
    In this study artificial neural networks and fuzzy logic are used to control the jumping behavior of a three-link uniped robot. The biped locomotion control problem is an increment of the uniped locomotion control. Study of legged locomotion dynamics indicates that a hierarchical controller is required to control the behavior of a legged robot. A structured control strategy is suggested which includes navigator, motion planner, biped coordinator and uniped controllers. A three-link uniped robot simulation is developed to be used as the plant. Neurocontrollers were trained both online and offline. In the case of on-line training, a reinforcement learning technique was used to train the neurocontroller to make the robot jump to a specified height. After several hundred iterations of training, the plant output achieved an accuracy of 7.4%. However, when jump distance and body angular momentum were also included in the control objectives, training time became impractically long. In the case of off-line training, a three-layered backpropagation (BP) network was first used with three inputs, three outputs and 15 to 40 hidden nodes. Pre-generated data were presented to the network with a learning rate as low as 0.003 in order to reach convergence. The low learning rate required for convergence resulted in a very slow training process which took weeks to learn 460 examples. After training, performance of the neurocontroller was rather poor. Consequently, the BP network was replaced by a Cerebeller Model Articulation Controller (CMAC) network. Subsequent experiments described in this document show that the CMAC network is more suitable to the solution of uniped locomotion control problems in terms of both learning efficiency and performance. A new approach is introduced in this report, viz., a self-organizing multiagent cerebeller model for fuzzy-neural control of uniped locomotion is suggested to improve training efficiency. This is currently being evaluated for a possible patent by NASA, Johnson Space Center. An alternative modular approach is also developed which uses separate controllers for each stage of the running stride. A self-organizing fuzzy-neural controller controls the height, distance and angular momentum of the stride. A CMAC-based controller controls the movement of the leg from the time the foot leaves the ground to the time of landing. Because the leg joints are controlled at each time step during flight, movement is smooth and obstacles can be avoided. Initial results indicate that this approach can yield fast, accurate results

    Intelligent approaches in locomotion - a review

    Get PDF

    An Application of Modified T2FHC Algorithm in Two-Link Robot Controller

    Get PDF
    Parallel robotic systems have shown their advantages over the traditional serial robots such as high payload capacity, high speed, and high precision. Their applications are widespread from transportation to manufacturing fields. Therefore, most of the recent studies in parallel robots focus on finding the best method to improve the system accuracy. Enhancing this metric, however, is still the biggest challenge in controlling a parallel robot owing to the complex mathematical model of the system. In this paper, we present a novel solution to this problem with a Type 2 Fuzzy Coherent Controller Network (T2FHC), which is composed of a Type 2 Cerebellar Model Coupling Controller (CMAC) with its fast convergence ability and a Brain Emotional Learning Controller (BELC) using the Lyaponov-based weight updating rule. In addition, the T2FHC is combined with a surface generator to increase the system flexibility. To evaluate its applicability in real life, the proposed controller was tested on a Quanser 2-DOF robot system in three case studies: no load, 180 g load and 360 g load, respectively. The results showed that the proposed structure achieved superior performance compared to those of available algorithms such as CMAC and Novel Self-Organizing Fuzzy CMAC (NSOF CMAC). The Root Mean Square Error (RMSE) index of the system that was 2.20E-06 for angle A and 2.26E-06 for angle B and the tracking error that was -6.42E-04 for angle A and 2.27E-04 for angle B demonstrate the good stability and high accuracy of the proposed T2FHC. With this outstanding achievement, the proposed method is promising to be applied to many applications using nonlinear systems

    Stability and weight smoothing in CMAC neural networks

    Get PDF
    Although the CMAC (Cerebellar Model Articulation Controller) neural network has been successfully used in control systems for many years, its property of local generalization, the availability of trained information for network responses at adjacent untrained locations, although responsible for the networks rapid learning and efficient implementation, results in network responses that is, when trained with sparse or widely spaced training data, spiky in nature even when the underlying function being learned is quite smooth. Since the derivative of such a network response can vary widely, the CMAC\u27s usefulness for solving optimization problems as well as for certain other control system applications can be severely limited. This dissertation presents the CMAC algorithm in sufficient detail to explore its strengths and weaknesses. Its properties of information generalization and storage are discussed and comparisons are made with other neural network algorithms and with other adaptive control algorithms. A synopsis of the development of the fields of neural networks and adaptive control is included to lend historical perspective. A stability analysis of the CMAC algorithm for open-loop function learning is developed. This stability analysis casts the function learning problem as a unique implementation of the model reference structure and develops a Lyapunov function to prove convergence of the CMAC to the target model. A new CMAC learning rule is developed by treating the CMAC as a set of simultaneous equations in a constrained optimization problem and making appropriate choices for the weight penalty matrix in the cost equation. This dissertation then presents a new CMAC learning algorithm which has the property of weight smoothing to improve generalization, function approximation in partially trained networks and the partial derivatives of learned functions. This new learning algorithm is significant in that it derives from an optimum solution and demonstrates a dramatic performance improvement for function learning in the presence of widely spaced training data. Developed from a completely unique analytical direction, this algorithm represents a coupling and extension of single- and multi-resolution CMAC algorithms developed by other researchers. The insights derived from the analysis of the optimum solution and the resulting new learning rules are discussed and suggestions for future work are presented

    Model-based reinforcement learning: A survey

    Get PDF
    Reinforcement learning is an important branch of machine learning and artificial intelligence. Compared with traditional reinforcement learning, model-based reinforcement learning obtains the action of the next state by the model that has been learned, and then optimizes the policy, which greatly improves data efficiency. Based on the present status of research on model-based reinforcement learning at home and abroad, this paper comprehensively reviews the key techniques of model-based reinforcement learning, summarizes the characteristics, advantages and defects of each technology, and analyzes the application of model-based reinforcement learning in games, robotics and brain science

    Using evolutionary artificial neural networks to design hierarchical animat nervous systems.

    Get PDF
    The research presented in this thesis examines the area of control systems for robots or animats (animal-like robots). Existing systems have problems in that they require a great deal of manual design or are limited to performing jobs of a single type. For these reasons, a better solution is desired. The system studied here is an Artificial Nervous System (ANS) which is biologically inspired; it is arranged as a hierarchy of layers containing modules operating in parallel. The ANS model has been developed to be flexible, scalable, extensible and modular. The ANS can be implemented using any suitable technology, for many different environments. The implementation focused on the two lowest layers (the reflex and action layers) of the ANS, which are concerned with control and rhythmic movement. Both layers were realised as Artificial Neural Networks (ANN) which were created using Evolutionary Algorithms (EAs). The task of the reflex layer was to control the position of an actuator (such as linear actuators or D.C. motors). The action layer performed the task of Central Pattern Generators (CPG), which produce rhythmic patterns of activity. In particular, different biped and quadruped gait patterns were created. An original neural model was specifically developed for assisting in the creation of these time-based patterns. It is shown in the thesis that Artificial Reflexes and CPGs can be configured successfully using this technique. The Artificial Reflexes were better at generalising across different actuators, without changes, than traditional controllers. Gaits such as pace, trot, gallop and pronk were successfully created using the CPGs. Experiments were conducted to determine whether modularity in the networks had an impact. It has been demonstrated that the degree of modularization in the network influences its evolvability, with more modular networks evolving more efficiently

    Learning control of bipedal dynamic walking robots with neural networks

    Get PDF
    Thesis (Elec.E.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998.Includes bibliographical references (p. 90-94).Stability and robustness are two important performance requirements for a dynamic walking robot. Learning and adaptation can improve stability and robustness. This thesis explores such an adaptation capability through the use of neural networks. Three neural network models (BP, CMAC and RBF networks) are studied. The RBF network is chosen as best, despite its weakness at covering high dimensional input spaces. To overcome this problem, a self-organizing scheme of data clustering is explored. This system is applied successfully in a biped walking robot system with a supervised learning mode. Generalized Virtual Model Control (GVMC) is also proposed in this thesis, which is inspired by a bio-mechanical model of locomotion, and is an extension of ordinary Virtual Model Control. Instead of adding virtual impedance components to the biped skeletal system in virtual Cartesian space, GVMC uses adaptation to approximately reconstruct the dynamics of the biped. The effectiveness of these approaches is proved both theoretically and experimentally (in simulation).by Jianjuen Hu.Elec.E
    corecore