23 research outputs found

    Gait parameter estimation from a miniaturized ear-worn sensor using singular spectrum analysis and longest common subsequence

    Get PDF
    This paper presents a new approach to gait analysis and parameter estimation from a single miniaturised earworn sensor embedded with a triaxial accelerometer. Singular spectrum analysis (SSA) combined with the longest common subsequence (LCSS) algorithm has been used as a basis for gait parameter estimation. It incorporates information from all axes of the accelerometer to estimate parameters including swing, stance and stride times. Rather than only using local features of the raw signals, the periodicity of the signals is also taken into account. The hypotheses tested by this study include: 1) how accurate is the ear-worn sensor in terms of gait parameter extraction compared to the use of an instrumented treadmill; 2) does the ear-worn sensor provide a feasible option for assessment and quantification of gait pattern changes. Key gait events for normal subjects such as heel contact and toe off are validated with a high-speed camera, as well as a force-plate instrumented treadmill. Ten healthy adults walked for 20 minutes on a treadmill with an increasing incline of 2% every 2 minutes. The upper and lower limits of the absolute errors using 95% confidence intervals for swing, stance and stride times were obtained as 35.5±3.99ms, 36.9 ± 3.84ms, and 17.9 ± 2.29ms, respectively

    Real-Time Gait Analysis Using a Single Head-Worn Inertial Measurement Unit

    Get PDF
    The background of this paper is to apply advanced real-time gait analysis to walking interventions in daily life setting. A vast of wearable devices provide gait information but not more than pedometer functions such as step counting, displacement, and velocity. This paper suggests a real-time gait analysis method based on a head-worn inertial measurement unit. A novel analysis method implements real-time detection of gait events (heel strike, toe off, and mid-stance phase) and immediately provides detailed spatiotemporal parameters. The reliability of this method was proven by a measurement with over 11 000 steps from seven participants on a 400-m outdoor track. The advanced gait analysis was conducted without any limitation of a fixed reference frame (e.g., indoor stage and infrared cameras). The mean absolute error in step-counting was 0.24%. Compared to a pedometer, additional gait parameters were obtained such as foot-ground contact time (CT) and CT ratio. The gait monitoring system can be used as real-time and long-term feedback, which is applicable in the management of the health status and on injury prevention. © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.European Commission/H2020-FETPROACT-2014/641321/E

    Unsupervised domain adaptation for position-independent IMU based gait analysis

    Get PDF
    Inertial measurement units (IMUs) together with advanced machine learning algorithms have enabled pervasive gait analysis. However, the worn positions of IMUs can be varied due to movements, and they are difficult to standardize across different trials, causing signal variations. Such variation contributes to a bias in the underlying distribution of training and testing data, and hinder the generalization ability of a computational gait analysis model. In this paper, we propose a position-independent IMU based gait analysis framework based on unsupervised domain adaptation. It is based on transferring knowledge from the trained data positions to a novel position without labels. Our framework was validated on gait event detection and pathological gait pattern recognition tasks based on different computational models and achieved consistently high performance on both tasks

    Intention Detection of Gait Adaptation in Natural Settings

    Get PDF
    Gait adaptation is an important part of gait analysis and its neuronal origin and dynamics has been studied extensively. In neurorehabilitation, it is important as it perturbs neuronal dynamics and allows patients to restore some of their motor function. Exoskeletons and robotics of the lower limbs are increasingly used to facilitate rehabilitation as well as supporting daily function. Their efficiency and safety depends on how well can sense the human intention to move and adapt the gait accordingly. This paper presents a gait adaptation scheme in natural settings. It allows monitoring of subjects in more realistic environment without the requirement of specialized equipment such as treadmill and foot pressure sensors. We extract gait characteristics based on a single RBG camera whereas wireless EEG signals are monitored simultaneously. We demonstrate that the method can not only successfully detect adaptation steps but also detect efficiently whether the subject adjust their pace to higher or lower speed

    An Overview of Smart Shoes in the Internet of Health Things: Gait and Mobility Assessment in Health Promotion and Disease Monitoring

    Get PDF
    New smart technologies and the internet of things increasingly play a key role in healthcare and wellness, contributing to the development of novel healthcare concepts. These technologies enable a comprehensive view of an individual’s movement and mobility, potentially supporting healthy living as well as complementing medical diagnostics and the monitoring of therapeutic outcomes. This overview article specifically addresses smart shoes, which are becoming one such smart technology within the future internet of health things, since the ability to walk defines large aspects of quality of life in a wide range of health and disease conditions. Smart shoes offer the possibility to support prevention, diagnostic work-up, therapeutic decisions, and individual disease monitoring with a continuous assessment of gait and mobility. This overview article provides the technological as well as medical aspects of smart shoes within this rising area of digital health applications, and is designed especially for the novel reader in this specific field. It also stresses the need for closer interdisciplinary interactions between technological and medical experts to bridge the gap between research and practice. Smart shoes can be envisioned to serve as pervasive wearable computing systems that enable innovative solutions and services for the promotion of healthy living and the transformation of health care

    Body sensor networks: smart monitoring solutions after reconstructive surgery

    Get PDF
    Advances in reconstructive surgery are providing treatment options in the face of major trauma and cancer. Body Sensor Networks (BSN) have the potential to offer smart solutions to a range of clinical challenges. The aim of this thesis was to review the current state of the art devices, then develop and apply bespoke technologies developed by the Hamlyn Centre BSN engineering team supported by the EPSRC ESPRIT programme to deliver post-operative monitoring options for patients undergoing reconstructive surgery. A wireless optical sensor was developed to provide a continuous monitoring solution for free tissue transplants (free flaps). By recording backscattered light from 2 different source wavelengths, we were able to estimate the oxygenation of the superficial microvasculature. In a custom-made upper limb pressure cuff model, forearm deoxygenation measured by our sensor and gold standard equipment showed strong correlations, with incremental reductions in response to increased cuff inflation durations. Such a device might allow early detection of flap failure, optimising the likelihood of flap salvage. An ear-worn activity recognition sensor was utilised to provide a platform capable of facilitating objective assessment of functional mobility. This work evolved from an initial feasibility study in a knee replacement cohort, to a larger clinical trial designed to establish a novel mobility score in patients recovering from open tibial fractures (OTF). The Hamlyn Mobility Score (HMS) assesses mobility over 3 activities of daily living: walking, stair climbing, and standing from a chair. Sensor-derived parameters including variation in both temporal and force aspects of gait were validated to measure differences in performance in line with fracture severity, which also matched questionnaire-based assessments. Monitoring the OTF cohort over 12 months with the HMS allowed functional recovery to be profiled in great detail. Further, a novel finding of continued improvements in walking quality after a plateau in walking quantity was demonstrated objectively. The methods described in this thesis provide an opportunity to revamp the recovery paradigm through continuous, objective patient monitoring along with self-directed, personalised rehabilitation strategies, which has the potential to improve both the quality and cost-effectiveness of reconstructive surgery services.Open Acces

    Sensing with Earables: A Systematic Literature Review and Taxonomy of Phenomena

    Get PDF
    Earables have emerged as a unique platform for ubiquitous computing by augmenting ear-worn devices with state-of-the-art sensing. This new platform has spurred a wealth of new research exploring what can be detected on a wearable, small form factor. As a sensing platform, the ears are less susceptible to motion artifacts and are located in close proximity to a number of important anatomical structures including the brain, blood vessels, and facial muscles which reveal a wealth of information. They can be easily reached by the hands and the ear canal itself is affected by mouth, face, and head movements. We have conducted a systematic literature review of 271 earable publications from the ACM and IEEE libraries. These were synthesized into an open-ended taxonomy of 47 different phenomena that can be sensed in, on, or around the ear. Through analysis, we identify 13 fundamental phenomena from which all other phenomena can be derived, and discuss the different sensors and sensing principles used to detect them. We comprehensively review the phenomena in four main areas of (i) physiological monitoring and health, (ii) movement and activity, (iii) interaction, and (iv) authentication and identification. This breadth highlights the potential that earables have to offer as a ubiquitous, general-purpose platform

    Validation of Instantaneous Respiratory Rate Using Reflectance PPG from Different Body Positions

    Get PDF
    Respiratory rate (RR) is a key parameter used in healthcare for monitoring and predicting patient deterioration. However, continuous and automatic estimation of this parameter from wearable sensors is still a challenging task. Various methods have been proposed to estimate RR from wearable sensors using windowed segments of the data; e.g., often using a minimum of 32 s. Little research has been reported in the literature concerning the instantaneous detection of respiratory rate from such sources. In this paper, we develop and evaluate a method to estimate instantaneous respiratory rate (IRR) from body-worn reflectance photoplethysmography (PPG) sensors. The proposed method relies on a nonlinear time-frequency representation, termed the wavelet synchrosqueezed transform (WSST). We apply the latter to derived modulations of the PPG that arise from the act of breathing.We validate the proposed algorithm using (i) a custom device with a PPG probe placed on various body positions and (ii) a commercial wrist-worn device (WaveletHealth Inc., Mountain View, CA, USA). Comparator reference data were obtained via a thermocouple placed under the nostrils, providing ground-truth information concerning respiration cycles. Tracking instantaneous frequencies was performed in the joint time-frequency spectrum of the (4 Hz re-sampled) respiratory-induced modulation using the WSST, from data obtained from 10 healthy subjects. The estimated instantaneous respiratory rates have shown to be highly correlated with breath-by-breath variations derived from the reference signals. The proposed method produced more accurate results compared to averaged RR obtained using 32 s windows investigated with overlap between successive windows of (i) zero and (ii) 28 s. For a set of five healthy subjects, the averaged similarity between reference RR and instantaneous RR, given by the longest common subsequence (LCSS) algorithm, was calculated as 0.69; this compares with averaged similarity of 0.49 using 32 s windows with 28 s overlap between successive windows. The results provide insight into estimation of IRR and show that upper body positions produced PPG signals from which a better respiration signal was extracted than for other body locations

    Head Trajectory Diagrams for Gait Symmetry Analysis Using a Single Head-Worn IMU

    Get PDF
    Gait symmetry analysis plays an important role in the diagnosis and rehabilitation of pathological gait. Recently, wearable devices have also been developed for simple gait analysis solutions. However, measurement in clinical settings can differ from gait in daily life, and simple wearable devices are restricted to a few parameters, providing one-sided trajectories of one arm or leg. Therefore, head-worn devices with sensors (e.g., earbuds) should be considered to analyze gait symmetry because the head sways towards the left and right side depending on steps. This paper proposed new visualization methods using head-worn sensors, able to facilitate gait symmetry analysis outside as well as inside. Data were collected with an inertial measurement unit (IMU) based motion capture system when twelve participants walked on the 400-m running track. From head trajectories on the transverse and frontal plane, three types of diagrams were displayed, and five concepts of parameters were measured for gait symmetry analysis. The mean absolute percentage error (MAPE) of step counting was lower than 0.65%, representing the reliability of measured parameters. The methods enable also left-right step recognition (MAPE ≤ 2.13%). This study can support maintenance and relearning of a balanced healthy gait in various areas with simple and easy-to-use devices

    Synchronous wearable wireless body sensor network composed of autonomous textile nodes

    Get PDF
    A novel, fully-autonomous, wearable, wireless sensor network is presented, where each flexible textile node performs cooperative synchronous acquisition and distributed event detection. Computationally efficient situational-awareness algorithms are implemented on the low-power microcontroller present on each flexible node. The detected events are wirelessly transmitted to a base station, directly, as well as forwarded by other on-body nodes. For each node, a dual-polarized textile patch antenna serves as a platform for the flexible electronic circuitry. Therefore, the system is particularly suitable for comfortable and unobtrusive integration into garments. In the meantime, polarization diversity can be exploited to improve the reliability and energy-efficiency of the wireless transmission. Extensive experiments in realistic conditions have demonstrated that this new autonomous, body-centric, textile-antenna, wireless sensor network is able to correctly detect different operating conditions of a firefighter during an intervention. By relying on four network nodes integrated into the protective garment, this functionality is implemented locally, on the body, and in real time. In addition, the received sensor data are reliably transferred to a central access point at the command post, for more detailed and more comprehensive real-time visualization. This information provides coordinators and commanders with situational awareness of the entire rescue operation. A statistical analysis of measured on-body node-to-node, as well as off-body person-to-person channels is included, confirming the reliability of the communication system
    corecore