51,934 research outputs found

    A Review on Human Gait Detection

    Get PDF
    The human gait is the identification of human locomotive based on limbs position or action The tracking of human gait can help in various applications like normal and abnormal gait fall detection gender detection age detection biometrics and in some terrorist and criminal activity detection The present work carried out is a review of various methodologies employed in human gait detection The analysis describes that the different feature extraction and machine learning techniques to be adopted for the identification of human gait based on the purpose of the applicatio

    Human gait identification and analysis

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.Human gait identification has become an active area of research due to increased security requirements. Human gait identification is a potential new tool for identifying individuals beyond traditional methods. The emergence of motion capture techniques provided a chance of high accuracy in identification because completely recorded gait information can be recorded compared with security cameras. The aim of this research was to build a practical method of gait identification and investigate the individual characteristics of gait. For this purpose, a gait identification approach was proposed, identification results were compared by different methods, and several studies about the individual characteristics of gait were performed. This research included the following: (1) a novel, effective set of gait features were proposed; (2) gait signatures were extracted by three different methods: statistical method, principal component analysis, and Fourier expansion method; (3) gait identification results were compared by these different methods; (4) two indicators were proposed to evaluate gait features for identification; (5) novel and clear definitions of gait phases and gait cycle were proposed; (6) gait features were investigated by gait phases; (7) principal component analysis and the fixing root method were used to elucidate which features were used to represent gait and why; (8) gait similarity was investigated; (9) gait attractiveness was investigated. This research proposed an efficient framework for identifying individuals from gait via a novel feature set based on 3D motion capture data. A novel evaluating method of gait signatures for identification was proposed. Three different gait signature extraction methods were applied and compared. The average identification rate was over 93%, with the best result close to 100%. This research also proposed a novel dividing method of gait phases, and the different appearances of gait features in eight gait phases were investigated. This research identified the similarities and asymmetric appearances between left body movement and right body movement in gait based on the proposed gait phase dividing method. This research also initiated an analysing method for gait features extraction by the fixing root method. A prediction model of gait attractiveness was built with reasonable accuracy by principal component analysis and linear regression of natural logarithm of parameters. A systematic relationship was observed between the motions of individual markers and the attractiveness ratings. The lower legs and feet were extracted as features of attractiveness by the fixing root method. As an extension of gait research, human seated motion was also investigated.This study is funded by the Dorothy Hodgkin Postgraduate Awards and Beijing East Gallery Co. Ltd

    Gait recognition based on shape and motion analysis of silhouette contours

    Get PDF
    This paper presents a three-phase gait recognition method that analyses the spatio-temporal shape and dynamic motion (STS-DM) characteristics of a human subject’s silhouettes to identify the subject in the presence of most of the challenging factors that affect existing gait recognition systems. In phase 1, phase-weighted magnitude spectra of the Fourier descriptor of the silhouette contours at ten phases of a gait period are used to analyse the spatio-temporal changes of the subject’s shape. A component-based Fourier descriptor based on anatomical studies of human body is used to achieve robustness against shape variations caused by all common types of small carrying conditions with folded hands, at the subject’s back and in upright position. In phase 2, a full-body shape and motion analysis is performed by fitting ellipses to contour segments of ten phases of a gait period and using a histogram matching with Bhattacharyya distance of parameters of the ellipses as dissimilarity scores. In phase 3, dynamic time warping is used to analyse the angular rotation pattern of the subject’s leading knee with a consideration of arm-swing over a gait period to achieve identification that is invariant to walking speed, limited clothing variations, hair style changes and shadows under feet. The match scores generated in the three phases are fused using weight-based score-level fusion for robust identification in the presence of missing and distorted frames, and occlusion in the scene. Experimental analyses on various publicly available data sets show that STS-DM outperforms several state-of-the-art gait recognition methods

    The suboptimal set of parameters describing human gait

    Get PDF
    The influence of choosing a set of parameters describing human gait for automatic gait analysis and assessment has been presented in this paper. The investigations were based on three sets of parameters and two different classificators. The conclusion is that the best set of parameters is set of coefficients which have been obtained by modelling of human gait by means of identification using the regression functio

    Gait Data Augmentation using Physics-Based Biomechanical Simulation

    Full text link
    This paper focuses on addressing the problem of data scarcity for gait analysis. Standard augmentation methods may produce gait sequences that are not consistent with the biomechanical constraints of human walking. To address this issue, we propose a novel framework for gait data augmentation by using OpenSIM, a physics-based simulator, to synthesize biomechanically plausible walking sequences. The proposed approach is validated by augmenting the WBDS and CASIA-B datasets and then training gait-based classifiers for 3D gender gait classification and 2D gait person identification respectively. Experimental results indicate that our augmentation approach can improve the performance of model-based gait classifiers and deliver state-of-the-art results for gait-based person identification with an accuracy of up to 96.11% on the CASIA-B dataset.Comment: 30 pages including references, 5 Figures submitted to ESW

    3D Gait Abnormality Detection Employing Contactless IR-UWB Sensing Phenomenon

    Get PDF
    Gait disorder diagnosis and rehabilitation is one area where human perception and observation are highly integrated. Predominantly, gait evaluation, comprises technological devices for gait analysis such as, dedicated force sensors, cameras, and wearable sensor based solutions, however they are limited by insufficient gait parameter recognition, post processing, installation costs, mobility, and skin irritation issues. Thus, the proposed study concentrates on the creation of a widely deployable, noncontact and non-intrusive gait recognition method from impulse radio ultra wideband (IR-UWB) sensing phenomenon, where a standalone IR-UWB system can detect gait problems with less human intervention. A 3D human motion model for gait identification from IR-UWB has been proposed with embracing spherical trigonometry and vector algebra to determine knee angles. Subsequently, normal and abnormal walking subjects were involved in this study. Abnormal gait subjects belong to the spastic gait category only. The prototype has been tested in both the anechoic and multipath environments. The outcomes have been corroborated with a simultaneously deployed Kinect Xbox sensor and supported by statistical graphical approach Bland and Altman (B&A) analysis

    CDBMGCIG: Design of a Cross-Domain Bioinspired Model for identification of Gait Components via Iterated GANs

    Get PDF
    This Gait identification assists in recognition of human body components from temporal image sequences. Such components consist of connected-body entities including head, upper body, lower body regions. Existing Gait recognition models use deep learning methods including variants of Convolutional Neural Networks (CNNs), Q-Learning, etc. But these methods are either highly complex, or do not perform well under complex background conditions. Moreover, most of these models are validated on a specific environmental condition, and cannot be scaled for general-purpose deployments. To overcome these issues, this text proposes design of a novel cross-domain bioinspired model for identification of gait components via Iterated Generative Adversarial Networks (IGANs). The proposed model initially extracts multidomain pixel-level feature sets from different images. These include frequency components via Fourier analysis, entropy components via Cosine analysis, spatial components via Gabor analysis, and window-based components via Wavelet &Convolutional analysis. These feature sets are processed via a Grey Wolf Optimization (GWO) Model, which assists in identification of high-density & highly variant features for different gait components. These features are classified via an iterated GAN, which comprises of Generator & Discriminator ssModels that assist in evaluating connected body components. These operations generate component-level scores that assist in identification of gait from complex background images. Due to which, the proposed model was observed to achieve 9.5% higher accuracy, 3.4% higher precision, and 2.9% higher recall than existing gait identification methods. The model also uses iterative learning, due to which its accuracy is incrementally improved w.r.t. number of evaluated image sets

    Human Gait Phase Recognition Based on Thigh Movement Computed using IMUs

    Get PDF
    Human gait analysis is a major topic in pedestrian navigation and geriatric care. Identifying gait phases is important in using human gait for pedestrian navigation and tracking. Most of existing gait phase identification techniques use multiple sensor modules attached to each section of the lower body. This paper discusses the feasibility of recognizing gait phases using a single inertial measurement unit (IMU) placed in a trouser pocket of the subject. The movement of the thigh is computed by fusing accelerometer and the gyroscopic data gathered from the IMU. Experimental results indicated that most of the major gait phases such as Initial Contact, Load Response, Mid Stance, Terminal Stance, Pre-Swing and Swing can be identified by the movement of one thigh tracked by an IMU. It was also noted that the movement of the offside leg can also be estimated from the fused IMU data. This paper presents a method to recognize all major phases of human stride cycle during walking from movement of one thigh
    corecore