2,542 research outputs found

    2.5D multi-view gait recognition based on point cloud registration

    Get PDF
    This paper presents a method for modeling a 2.5-dimensional (2.5D) human body and extracting the gait features for identifying the human subject. To achieve view-invariant gait recognition, a multi-view synthesizing method based on point cloud registration (MVSM) to generate multi-view training galleries is proposed. The concept of a density and curvature-based Color Gait Curvature Image is introduced to map 2.5D data onto a 2D space to enable data dimension reduction by discrete cosine transform and 2D principle component analysis. Gait recognition is achieved via a 2.5D view-invariant gait recognition method based on point cloud registration. Experimental results on the in-house database captured by a Microsoft Kinect camera show a significant performance gain when using MVSM

    Using New Camera-Based Technologies for Gait Analysis in Older Adults in Comparison to the Established GAITRite System

    Get PDF
    Various gait parameters can be used to assess the risk of falling in older adults. However, the state-of-the-art systems used to quantify gait parameters often come with high costs as well as training and space requirements. Gait analysis systems, which use mobile and commercially available cameras, can be an easily available, marker-free alternative. In a study with 44 participants (age ≥ 65 years), gait patterns were analyzed with three different systems: a pressure sensitive walkway system (GAITRite-System, GS) as gold standard, Motognosis Labs Software using a Microsoft Kinect Sensor (MKS), and a smartphone camera-based application (SCA). Intertrial repeatability showed moderate to excellent results for MKS (ICC(1,1) 0.574 to 0.962) for almost all measured gait parameters and moderate reliability in SCA measures for gait speed (ICC(1,1) 0.526 to 0.535). All gait parameters of MKS showed a high level of agreement with GS (ICC(2,k) 0.811 to 0.981). Gait parameters extracted with SCA showed poor reliability. The tested gait analysis systems based on different camera systems are currently only partially able to capture valid gait parameters. If the underlying algorithms are adapted and camera technology is advancing, it is conceivable that these comparatively simple methods could be used for gait analysis

    Fall prevention intervention technologies: A conceptual framework and survey of the state of the art

    Get PDF
    In recent years, an ever increasing range of technology-based applications have been developed with the goal of assisting in the delivery of more effective and efficient fall prevention interventions. Whilst there have been a number of studies that have surveyed technologies for a particular sub-domain of fall prevention, there is no existing research which surveys the full spectrum of falls prevention interventions and characterises the range of technologies that have augmented this landscape. This study presents a conceptual framework and survey of the state of the art of technology-based fall prevention systems which is derived from a systematic template analysis of studies presented in contemporary research literature. The framework proposes four broad categories of fall prevention intervention system: Pre-fall prevention; Post-fall prevention; Fall injury prevention; Cross-fall prevention. Other categories include, Application type, Technology deployment platform, Information sources, Deployment environment, User interface type, and Collaborative function. After presenting the conceptual framework, a detailed survey of the state of the art is presented as a function of the proposed framework. A number of research challenges emerge as a result of surveying the research literature, which include a need for: new systems that focus on overcoming extrinsic falls risk factors; systems that support the environmental risk assessment process; systems that enable patients and practitioners to develop more collaborative relationships and engage in shared decision making during falls risk assessment and prevention activities. In response to these challenges, recommendations and future research directions are proposed to overcome each respective challenge.The Royal Society, grant Ref: RG13082

    Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions.

    Get PDF
    Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems

    Gait Velocity Estimation using time interleaved between Consecutive Passive IR Sensor Activations

    Full text link
    Gait velocity has been consistently shown to be an important indicator and predictor of health status, especially in older adults. It is often assessed clinically, but the assessments occur infrequently and do not allow optimal detection of key health changes when they occur. In this paper, we show that the time gap between activations of a pair of Passive Infrared (PIR) motion sensors installed in the consecutively visited room pair carry rich latent information about a person's gait velocity. We name this time gap transition time and show that despite a six second refractory period of the PIR sensors, transition time can be used to obtain an accurate representation of gait velocity. Using a Support Vector Regression (SVR) approach to model the relationship between transition time and gait velocity, we show that gait velocity can be estimated with an average error less than 2.5 cm/sec. This is demonstrated with data collected over a 5 year period from 74 older adults monitored in their own homes. This method is simple and cost effective and has advantages over competing approaches such as: obtaining 20 to 100x more gait velocity measurements per day and offering the fusion of location-specific information with time stamped gait estimates. These advantages allow stable estimates of gait parameters (maximum or average speed, variability) at shorter time scales than current approaches. This also provides a pervasive in-home method for context-aware gait velocity sensing that allows for monitoring of gait trajectories in space and time
    • …
    corecore