175 research outputs found

    Feature-based Lucas-Kanade and Active Appearance Models

    Get PDF
    Lucas-Kanade and Active Appearance Models are among the most commonly used methods for image alignment and facial fitting, respectively. They both utilize non-linear gradient descent, which is usually applied on intensity values. In this paper, we propose the employment of highly-descriptive, densely-sampled image features for both problems. We show that the strategy of warping the multi-channel dense feature image at each iteration is more beneficial than extracting features after warping the intensity image at each iteration. Motivated by this observation, we demonstrate robust and accurate alignment and fitting performance using a variety of powerful feature descriptors. Especially with the employment of HOG and SIFT features, our method significantly outperforms the current state-of-the-art results on in-the-wild databases

    Facial Action Recognition Combining Heterogeneous Features via Multi-Kernel Learning

    Get PDF
    International audienceThis paper presents our response to the first interna- tional challenge on Facial Emotion Recognition and Analysis. We propose to combine different types of features to automatically detect Action Units in facial images. We use one multi-kernel SVM for each Action Unit we want to detect. The first kernel matrix is computed using Local Gabor Binary Pattern histograms and a histogram intersection kernel. The second kernel matrix is computed from AAM coefficients and an RBF kernel. During the training step, we combine these two types of features using the recently proposed SimpleMKL algorithm. SVM outputs are then averaged to exploit temporal information in the sequence. To eval- uate our system, we perform deep experimentations on several key issues: influence of features and kernel function in histogram- based SVM approaches, influence of spatially-independent in- formation versus geometric local appearance information and benefits of combining both, sensitivity to training data and interest of temporal context adaptation. We also compare our results to those of the other participants and try to explain why our method had the best performance during the FERA challenge

    HOG active appearance models

    Get PDF
    We propose the combination of dense Histogram of Oriented Gradients (HOG) features with Active Appearance Models (AAMs). We employ the efficient Inverse Compositional optimization technique and show results for the task of face fitting. By taking advantage of the descriptive characteristics of HOG features, we build robust and accurate AAMs that generalize well to unseen faces with illumination, identity, pose and occlusion variations. Our experiments on challenging in-the-wild databases show that HOG AAMs significantly outperform current state-of-the-art results of discriminative methods trained on larger databases

    Active orientation models for face alignment in-the-wild

    Get PDF
    We present Active Orientation Models (AOMs), generative models of facial shape and appearance, which extend the well-known paradigm of Active Appearance Models (AAMs) for the case of generic face alignment under unconstrained conditions. Robustness stems from the fact that the proposed AOMs employ a statistically robust appearance model based on the principal components of image gradient orientations. We show that when incorporated within standard optimization frameworks for AAM learning and fitting, this kernel Principal Component Analysis results in robust algorithms for model fitting. At the same time, the resulting optimization problems maintain the same computational cost. As a result, the main similarity of AOMs with AAMs is the computational complexity. In particular, the project-out version of AOMs is as computationally efficient as the standard project-out inverse compositional algorithm, which is admittedly one of the fastest algorithms for fitting AAMs. We verify experimentally that: 1) AOMs generalize well to unseen variations and 2) outperform all other state-of-the-art AAM methods considered by a large margin. This performance improvement brings AOMs at least in par with other contemporary methods for face alignment. Finally, we provide MATLAB code at http://ibug.doc.ic.ac.uk/resources

    Towards Pose-Invariant 2D Face Classification for Surveillance

    Get PDF
    A key problem for "face in the crowd" recognition from existing surveillance cameras in public spaces (such as mass transit centres) is the issue of pose mismatches between probe and gallery faces. In addition to accuracy, scalability is also important, necessarily limiting the complexity of face classification algorithms. In this paper we evaluate recent approaches to the recognition of faces at relatively large pose angles from a gallery of frontal images and propose novel adaptations as well as modifications. Specifically, we compare and contrast the accuracy, robustness and speed of an Active Appearance Model (AAM) based method (where realistic frontal faces are synthesized from non-frontal probe faces) against bag-of-features methods (which are local feature approaches based on block Discrete Cosine Transforms and Gaussian Mixture Models). We show a novel approach where the AAM based technique is sped up by directly obtaining pose-robust features, allowing the omission of the computationally expensive and artefact producing image synthesis step. Additionally, we adapt a histogram-based bag-of-features technique to face classification and contrast its properties to a previously proposed direct bag-of-features method. We also show that the two bag-of-features approaches can be considerably sped up, without a loss in classification accuracy, via an approximation of the exponential function. Experiments on the FERET and PIE databases suggest that the bag-of-features techniques generally attain better performance, with significantly lower computational loads. The histogram-based bag-of-features technique is capable of achieving an average recognition accuracy of 89% for pose angles of around 25 degrees

    Improving Facial Analysis and Performance Driven Animation through Disentangling Identity and Expression

    Full text link
    We present techniques for improving performance driven facial animation, emotion recognition, and facial key-point or landmark prediction using learned identity invariant representations. Established approaches to these problems can work well if sufficient examples and labels for a particular identity are available and factors of variation are highly controlled. However, labeled examples of facial expressions, emotions and key-points for new individuals are difficult and costly to obtain. In this paper we improve the ability of techniques to generalize to new and unseen individuals by explicitly modeling previously seen variations related to identity and expression. We use a weakly-supervised approach in which identity labels are used to learn the different factors of variation linked to identity separately from factors related to expression. We show how probabilistic modeling of these sources of variation allows one to learn identity-invariant representations for expressions which can then be used to identity-normalize various procedures for facial expression analysis and animation control. We also show how to extend the widely used techniques of active appearance models and constrained local models through replacing the underlying point distribution models which are typically constructed using principal component analysis with identity-expression factorized representations. We present a wide variety of experiments in which we consistently improve performance on emotion recognition, markerless performance-driven facial animation and facial key-point tracking.Comment: to appear in Image and Vision Computing Journal (IMAVIS
    • …
    corecore