6,496 research outputs found

    An Overview of the Research on Texture Based Plant Leaf Classification

    Full text link
    Plant classification has a broad application prospective in agriculture and medicine, and is especially significant to the biology diversity research. As plants are vitally important for environmental protection, it is more important to identify and classify them accurately. Plant leaf classification is a technique where leaf is classified based on its different morphological features. The goal of this paper is to provide an overview of different aspects of texture based plant leaf classification and related things. At last we will be concluding about the efficient method i.e. the method that gives better performance compared to the other methods.Comment: 12 pages,5 figures and 3 table

    Survey of Computer Vision and Machine Learning in Gastrointestinal Endoscopy

    Full text link
    This paper attempts to provide the reader a place to begin studying the application of computer vision and machine learning to gastrointestinal (GI) endoscopy. They have been classified into 18 categories. It should be be noted by the reader that this is a review from pre-deep learning era. A lot of deep learning based applications have not been covered in this thesis

    A Survey on Periocular Biometrics Research

    Full text link
    Periocular refers to the facial region in the vicinity of the eye, including eyelids, lashes and eyebrows. While face and irises have been extensively studied, the periocular region has emerged as a promising trait for unconstrained biometrics, following demands for increased robustness of face or iris systems. With a surprisingly high discrimination ability, this region can be easily obtained with existing setups for face and iris, and the requirement of user cooperation can be relaxed, thus facilitating the interaction with biometric systems. It is also available over a wide range of distances even when the iris texture cannot be reliably obtained (low resolution) or under partial face occlusion (close distances). Here, we review the state of the art in periocular biometrics research. A number of aspects are described, including: i) existing databases, ii) algorithms for periocular detection and/or segmentation, iii) features employed for recognition, iv) identification of the most discriminative regions of the periocular area, v) comparison with iris and face modalities, vi) soft-biometrics (gender/ethnicity classification), and vii) impact of gender transformation and plastic surgery on the recognition accuracy. This work is expected to provide an insight of the most relevant issues in periocular biometrics, giving a comprehensive coverage of the existing literature and current state of the art.Comment: Published in Pattern Recognition Letter

    Density Weighted Connectivity of Grass Pixels in Image Frames for Biomass Estimation

    Full text link
    Accurate estimation of the biomass of roadside grasses plays a significant role in applications such as fire-prone region identification. Current solutions heavily depend on field surveys, remote sensing measurements and image processing using reference markers, which often demand big investments of time, effort and cost. This paper proposes Density Weighted Connectivity of Grass Pixels (DWCGP) to automatically estimate grass biomass from roadside image data. The DWCGP calculates the length of continuously connected grass pixels along a vertical orientation in each image column, and then weights the length by the grass density in a surrounding region of the column. Grass pixels are classified using feedforward artificial neural networks and the dominant texture orientation at every pixel is computed using multi-orientation Gabor wavelet filter vote. Evaluations on a field survey dataset show that the DWCGP reduces Root-Mean-Square Error from 5.84 to 5.52 by additionally considering grass density on top of grass height. The DWCGP shows robustness to non-vertical grass stems and to changes of both Gabor filter parameters and surrounding region widths. It also has performance close to human observation and higher than eight baseline approaches, as well as promising results for classifying low vs. high fire risk and identifying fire-prone road regions.Comment: 28 pages, accepted manuscript, Expert Systems with Application

    Multichannel Distributed Local Pattern for Content Based Indexing and Retrieval

    Full text link
    A novel color feature descriptor, Multichannel Distributed Local Pattern (MDLP) is proposed in this manuscript. The MDLP combines the salient features of both local binary and local mesh patterns in the neighborhood. The multi-distance information computed by the MDLP aids in robust extraction of the texture arrangement. Further, MDLP features are extracted for each color channel of an image. The retrieval performance of the MDLP is evaluated on the three benchmark datasets for CBIR, namely Corel-5000, Corel-10000 and MIT-Color Vistex respectively. The proposed technique attains substantial improvement as compared to other state-of- the-art feature descriptors in terms of various evaluation parameters such as ARP and ARR on the respective databases.Comment: Accepted in INDICON-201

    From BoW to CNN: Two Decades of Texture Representation for Texture Classification

    Full text link
    Texture is a fundamental characteristic of many types of images, and texture representation is one of the essential and challenging problems in computer vision and pattern recognition which has attracted extensive research attention. Since 2000, texture representations based on Bag of Words (BoW) and on Convolutional Neural Networks (CNNs) have been extensively studied with impressive performance. Given this period of remarkable evolution, this paper aims to present a comprehensive survey of advances in texture representation over the last two decades. More than 200 major publications are cited in this survey covering different aspects of the research, which includes (i) problem description; (ii) recent advances in the broad categories of BoW-based, CNN-based and attribute-based methods; and (iii) evaluation issues, specifically benchmark datasets and state of the art results. In retrospect of what has been achieved so far, the survey discusses open challenges and directions for future research.Comment: Accepted by IJC

    HEp-2 Cell Classification via Fusing Texture and Shape Information

    Full text link
    Indirect Immunofluorescence (IIF) HEp-2 cell image is an effective evidence for diagnosis of autoimmune diseases. Recently computer-aided diagnosis of autoimmune diseases by IIF HEp-2 cell classification has attracted great attention. However the HEp-2 cell classification task is quite challenging due to large intra-class variation and small between-class variation. In this paper we propose an effective and efficient approach for the automatic classification of IIF HEp-2 cell image by fusing multi-resolution texture information and richer shape information. To be specific, we propose to: a) capture the multi-resolution texture information by a novel Pairwise Rotation Invariant Co-occurrence of Local Gabor Binary Pattern (PRICoLGBP) descriptor, b) depict the richer shape information by using an Improved Fisher Vector (IFV) model with RootSIFT features which are sampled from large image patches in multiple scales, and c) combine them properly. We evaluate systematically the proposed approach on the IEEE International Conference on Pattern Recognition (ICPR) 2012, IEEE International Conference on Image Processing (ICIP) 2013 and ICPR 2014 contest data sets. The experimental results for the proposed methods significantly outperform the winners of ICPR 2012 and ICIP 2013 contest, and achieve comparable performance with the winner of the newly released ICPR 2014 contest.Comment: 11 pages, 7 figure

    Classifying Traffic Scenes Using The GIST Image Descriptor

    Full text link
    This paper investigates classification of traffic scenes in a very low bandwidth scenario, where an image should be coded by a small number of features. We introduce a novel dataset, called the FM1 dataset, consisting of 5615 images of eight different traffic scenes: open highway, open road, settlement, tunnel, tunnel exit, toll booth, heavy traffic and the overpass. We evaluate the suitability of the GIST descriptor as a representation of these images, first by exploring the descriptor space using PCA and k-means clustering, and then by using an SVM classifier and recording its 10-fold cross-validation performance on the introduced FM1 dataset. The obtained recognition rates are very encouraging, indicating that the use of the GIST descriptor alone could be sufficiently descriptive even when very high performance is required.Comment: Part of the Proceedings of the Croatian Computer Vision Workshop, CCVW 2013, Year

    Multitask Painting Categorization by Deep Multibranch Neural Network

    Full text link
    In this work we propose a new deep multibranch neural network to solve the tasks of artist, style, and genre categorization in a multitask formulation. In order to gather clues from low-level texture details and, at the same time, exploit the coarse layout of the painting, the branches of the proposed networks are fed with crops at different resolutions. We propose and compare two different crop strategies: the first one is a random-crop strategy that permits to manage the tradeoff between accuracy and speed; the second one is a smart extractor based on Spatial Transformer Networks trained to extract the most representative subregions. Furthermore, inspired by the results obtained in other domains, we experiment the joint use of hand-crafted features directly computed on the input images along with neural ones. Experiments are performed on a new dataset originally sourced from wikiart.org and hosted by Kaggle, and made suitable for artist, style and genre multitask learning. The dataset here proposed, named MultitaskPainting100k, is composed by 100K paintings, 1508 artists, 125 styles and 41 genres. Our best method, tested on the MultitaskPainting100k dataset, achieves accuracy levels of 56.5%, 57.2%, and 63.6% on the tasks of artist, style and genre prediction respectively.Comment: 11 pages, under revie

    A Novel Feature Descriptor for Image Retrieval by Combining Modified Color Histogram and Diagonally Symmetric Co-occurrence Texture Pattern

    Full text link
    In this paper, we have proposed a novel feature descriptors combining color and texture information collectively. In our proposed color descriptor component, the inter-channel relationship between Hue (H) and Saturation (S) channels in the HSV color space has been explored which was not done earlier. We have quantized the H channel into a number of bins and performed the voting with saturation values and vice versa by following a principle similar to that of the HOG descriptor, where orientation of the gradient is quantized into a certain number of bins and voting is done with gradient magnitude. This helps us to study the nature of variation of saturation with variation in Hue and nature of variation of Hue with the variation in saturation. The texture component of our descriptor considers the co-occurrence relationship between the pixels symmetric about both the diagonals of a 3x3 window. Our work is inspired from the work done by Dubey et al.[1]. These two components, viz. color and texture information individually perform better than existing texture and color descriptors. Moreover, when concatenated the proposed descriptors provide significant improvement over existing descriptors for content base color image retrieval. The proposed descriptor has been tested for image retrieval on five databases, including texture image databases - MIT VisTex database and Salzburg texture database and natural scene databases Corel 1K, Corel 5K and Corel 10K. The precision and recall values experimented on these databases are compared with some state-of-art local patterns. The proposed method provided satisfactory results from the experiments.Comment: Preprint Submitte
    • …
    corecore