11 research outputs found

    Diagnosis of induction motor faults via gabor analysis of the current in transient regime

    Full text link
    © 2011 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] Time-frequency analysis of the transient current in induction motors (IMs) is the basis of the transient motor current signature analysis diagnosis method. IM faults can be accurately identified by detecting the characteristic pattern that each type of fault produces in the time-frequency plane during a speed transient. Diverse transforms have been proposed to generate a 2-D time-frequency representation of the current, such as the short time Fourier transform (FT), the wavelet transform, or the Wigner-Ville distribution. However, a fine tuning of their parameters is needed in order to obtain a high-resolution image of the fault in the time-frequency domain, and they also require a much higher processing effort than traditional diagnosis techniques, such as the FT. The new method proposed in this paper addresses both problems using the Gabor analysis of the current via the chirp z-transform, which can be easily adapted to generate high-resolution time-frequency stamps of different types of faults. In this paper, it is used to diagnose broken bars and mixed eccentricity faults of an IM using the current during a startup transient. This new approach is theoretically introduced and experimentally validated with a 1.1-kW commercial motor in faulty and healthy conditions. © 2012 IEEE.This work was supported by the Spanish Ministerio de Ciencia e Innovacion (MICINN) in the framework of the VI Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica 2008-2011. (Programa Nacional de proyectos de Investigacion Fundamental, project reference DPI2011-23740). The Associate Editor coordinating the review process for this paper was Dr. Subhas Mukhopadhyay.Riera-Guasp, M.; Pineda-Sanchez, M.; Pérez-Cruz, J.; Puche-Panadero, R.; Roger-Folch, J.; Antonino-Daviu, J. (2012). Diagnosis of induction motor faults via gabor analysis of the current in transient regime. IEEE Transactions on Instrumentation and Measurement. 61(6):1583-1596. doi:10.1109/TIM.2012.2186650S1583159661

    Discrete Subspace Multiwindow Gabor Frames and Their Duals

    Get PDF
    This paper addresses discrete subspace multiwindow Gabor analysis. Such a scenario can model many practical signals and has potential applications in signal processing. In this paper, using a suitable Zak transform matrix we characterize discrete subspace mixed multi-window Gabor frames (Riesz bases and orthonormal bases) and their duals with Gabor structure. From this characterization, we can easily obtain frames by designing Zak transform matrices. In particular, for usual multi-window Gabor frames (i.e., all windows have the same time-frequency shifts), we characterize the uniqueness of Gabor dual of type I (type II) and also give a class of examples of Gabor frames and an explicit expression of their Gabor duals of type I (type II)

    Sparse Nonstationary Gabor Expansions - with Applications to Music Signals

    Get PDF

    Spectral Analysis for Signal Detection and Classification : Reducing Variance and Extracting Features

    Get PDF
    Spectral analysis encompasses several powerful signal processing methods. The papers in this thesis present methods for finding good spectral representations, and methods both for stationary and non-stationary signals are considered. Stationary methods can be used for real-time evaluation, analysing shorter segments of an incoming signal, while non-stationary methods can be used to analyse the instantaneous frequencies of fully recorded signals. All the presented methods aim to produce spectral representations that have high resolution and are easy to interpret. Such representations allow for detection of individual signal components in multi-component signals, as well as separation of close signal components. This makes feature extraction in the spectral representation possible, relevant features include the frequency or instantaneous frequency of components, the number of components in the signal, and the time duration of the components. Two methods that extract some of these features automatically for two types of signals are presented in this thesis. One adapted to signals with two longer duration frequency modulated components that detects the instantaneous frequencies and cross-terms in the Wigner-Ville distribution, the other for signals with an unknown number of short duration oscillations that detects the instantaneous frequencies in a reassigned spectrogram. This thesis also presents two multitaper methods that reduce the influence of noise on the spectral representations. One is designed for stationary signals and the other for non-stationary signals with multiple short duration oscillations. Applications for the methods presented in this thesis include several within medicine, e.g. diagnosis from analysis of heart rate variability, improved ultrasound resolution, and interpretation of brain activity from the electroencephalogram

    Circuit paradigm in the 21

    Get PDF
    reviewe

    Sparse and structured decomposition of audio signals on hybrid dictionaries using musical priors

    No full text
    International audienceThis paper investigates the use of musical priors for sparse expansion of audio signals of music, on an overcomplete dual-resolution dictionary taken from the union of two orthonormal bases that can describe both transient and tonal components of a music audio signal. More specifically, chord and metrical structure information are used to build a structured model that takes into account dependencies between coefficients of the decomposition, both for the tonal and for the transient layer. The denoising task application is used to provide a proof of concept of the proposed musical priors. Several configurations of the model are analyzed. Evaluation on monophonic and complex polyphonic excerpts of real music signals shows that the proposed approach provides results whose quality measured by the signal-to-noise ratio is competitive with state-of-the-art approaches, and more coherent with the semantic content of the signal. A detailed analysis of the model in terms of sparsity and in terms of interpretability of the representation is also provided, and shows that the model is capable of giving a relevant and legible representation of Western tonal music audio signals

    Proceedings of the 7th Sound and Music Computing Conference

    Get PDF
    Proceedings of the SMC2010 - 7th Sound and Music Computing Conference, July 21st - July 24th 2010

    Newborn EEG connectivity analysis using time-frequency signal processing techniques

    Get PDF
    corecore