1,480 research outputs found

    Analysis, design, fabrication and testing of an optical tip clearance sensor

    Get PDF
    Analyses and the design, fabrication, and testing of an optical tip clearance sensor with intended application in aircraft propulsion control systems are reported. The design of a sensor test rig, evaluation of optical sensor components at elevated temperatures, sensor design principles, sensor test results at room temperature, and estimations of sensor accuracy at temperatures of an aircraft engine environment are discussed. Room temperature testing indicated possible measurement accuracies of less than 12.7 microns (0.5 mils). Ways to improve performance at engine operating temperatures are recommended. The potential of this tip clearance sensor is assessed

    Optical Guidance System /OGS/ for rendezvous and docking Final report

    Get PDF
    Optical guidance system for Apollo rendezvous and dockin

    Mass and power modeling of communication satellites

    Get PDF
    Analytic estimating relationships for the mass and power requirements for major satellite subsystems are described. The model for each subsystem is keyed to the performance drivers and system requirements that influence their selection and use. Guidelines are also given for choosing among alternative technologies which accounts for other significant variables such as cost, risk, schedule, operations, heritage, and life requirements. These models are intended for application to first order systems analyses, where resources do not warrant detailed development of a communications system scenario. Given this ground rule, the models are simplified to 'smoothed' representation of reality. Therefore, the user is cautioned that cost, schedule, and risk may be significantly impacted where interpolations are sufficiently different from existing hardware as to warrant development of new devices

    The development of the toner density sensor for closed-loop feedback laser printer calibration

    Get PDF
    A new infrared (IR) sensor was developed for application in closed-loop feedback printer calibration as it relates to monochrome (black toner only) laser printers. The toner density IR sensor (TDS) was introduced in the early 1980’s; however, due to cost and limitation of technologies at the time, implementation was not accomplished until within the past decade. Existing IR sensor designs do not discuss/address: • EMI (electromagnetic interference) effects on the sensor due to EP (electrophotography) components • Design considerations for environmental conditions • Sensor response time as it affects printer process speed The toner density sensor (TDS) implemented in the Lexmark E series printer reduces these problems and eliminates the use of the current traditional “open-loop” (meaning feedback are parameters not directly affecting print darkness such as page count, toner level, etc.) calibration process where print darkness is adjusted using previously calculated and stored EP process parameters. The historical process does not have the ability to capture cartridge component variation and environmental changes which affect print darkness variation. The TDS captures real time data which is used to calculate EP process parameters for the adjustment of print darkness; as a result, greatly reducing variations uncontrolled by historical printer calibration. Specifically, the first and primary purpose of this research is to reduce print darkness variation using the TDS. The second goal is to mitigate the TDS EMI implementation issue for reliable data accuracy

    Index to 1981 NASA Tech Briefs, volume 6, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1981 Tech Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    A New Approach To Measure Unique Spectral Response Characteristics For Irregularly Shaped Photovoltaic Arrays

    Get PDF
    Current photovoltaic (PV) panel test methods do not provide efficient and repeatable standardization, which can result in inconsistent results. Test requirements for individual PV cells are promulgated by standard test conditions (STC), but do not directly translate to new array or panel designs, particularly for panels that are irregularly shaped and used for different applications. Optimal angles that yield the most power delivery from the PV device when integrated into a panel are achieved by manipulating the panel’s orientation via single or dual axis tracking (e.g., maximum power point tracking). In applications where PV is intended to be integrated into a flying object, such as an unmanned aerial vehicle (UAV), maximum power point tracking (MPPT) is not an option due to aerodynamic constraints resulting from airfoil and control surface design. In these instances, it is pertinent to develop a system that can consistently measure responses of a PV-embedded airfoil in a controlled environment that is also cost-efficient and readily available for researchers to use. Additionally, the system must also be scalable to meet the needs of larger experimental setups for future UAV development. The intent of this dissertation was to propose a new method for capturing the PV-embedded airfoil performance as it compares to a conventional flat panel in terms of efficiencies. As a result, a user has the ability to analyze the collected experimental data and subsequently develop a performance correction factor that is specific to the airfoil used. Recommendations to further enhance analysis of UAV integrated PV efficiency factors, such as vibration impacts on performance, will also be discussed. From an analysis of experimental data, unmanned aerial systems (UAS) engineers can be able to integrate renewable energy systems more effectively and therefore increase vehicle energy efficiency
    • …
    corecore