21,462 research outputs found

    Rorc restrains the potency of ST2+ regulatory T cells in ameliorating intestinal graft-versus-host disease

    Get PDF
    Soluble stimulation-2 (ST2) is increased during graft-versus-host disease (GVHD), while Tregs that express ST2 prevent GVHD through unknown mechanisms. Transplantation of Foxp3- T cells and Tregs that were collected and sorted from different Foxp3 reporter mice indicated that in mice that developed GVHD, ST2+ Tregs were thymus derived and predominantly localized to the intestine. ST2-/- Treg transplantation was associated with reduced total intestinal Treg frequency and activation. ST2-/- versus WT intestinal Treg transcriptomes showed decreased Treg functional markers and, reciprocally, increased Rorc expression. Rorc-/- T cells transplantation enhanced the frequency and function of intestinal ST2+ Tregs and reduced GVHD through decreased gut-infiltrating soluble ST2-producing type 1 and increased IL-4/IL-10-producing type 2 T cells. Cotransfer of ST2+ Tregs sorted from Rorc-/- mice with WT CD25-depleted T cells decreased GVHD severity and mortality, increased intestinal ST2+KLRG1+ Tregs, and decreased type 1 T cells after transplantation, indicating an intrinsic mechanism. Ex vivo IL-33-stimulated Tregs (TregIL-33) expressed higher amphiregulin and displayed better immunosuppression, and adoptive transfer prevented GVHD better than control Tregs or TregIL-33 cultured with IL-23/IL-17. Amphiregulin blockade by neutralizing antibody in vivo abolished the protective effect of TregIL-33. Our data show that inverse expression of ST2 and RORγt in intestinal Tregs determines GVHD and that TregIL-33 has potential as a cellular therapy avenue for preventing GVHD

    Pathogenetic role of tissue factor in graft-versus-host disease

    Get PDF
    Graft-versus-host disease (GVHD) is a serious complication after allogeneic stem cell transplantation, the mechanism of it is still not elucidated. Recent findings suggest that host endothelial cells are a target of alloreactive donor cytotoxic T lymphocytes in GVHD and tissue factor (TF) plays an important role not only in coagulation-inflammation cycle, but also in transplant immunology. We postulate TF expression in vascular endothelial cells(VEC) may play an pivotal role in the pathogenesis of GVHD. TF gene andprotein expression in target organs of GVHD in aGVHD mice was significantly elevated compared to that of controls as determined by real-time PCR and Western blotting. Allogeneic CD4^+^T cell and CD8^+^T cells enhanced TF, VCAM-1, TNF-[alpha], IFN-[gamma] and IL-6 expression in TNF-[alpha] prestimulated HUVECs compared to controls as determined by flowcytometry and real-time PCR. JNK and p38MAPK mediated allogeneic T cells-induced TF expression in HUVECs. These effects were largely prevented by monoclonal antibody against TF, SB203580 and SP600125. In concert, these data provide strong evidence that upregulated TF expression is related to tissue damage caused by GVHD, TF isthe key factor in GVHD mediated by endothelial cells and allogeneic T cells-induced TF and consecutive proinflammatory cytokines expression in VEC contribute to the pathogenesis of GVHD
    corecore