4,356 research outputs found

    Motorized cart

    Get PDF
    Motorized cart is known as an effective tool and timeless that help people carry heavy loads. For farmers, it has an especially vital tool for moving goods. Oil palm farmers typically uses the wheelbarrow to move the oil palm fruit (Figure 10.1). However, there is a lack of equipment that should be further enhanced in capabilities. Motorized carts that seek to add automation to wheelbarrow as it is to help people save manpower while using it. At present, oil palm plantation industry is among the largest in Malaysia. However, in an effort to increase the prestige of the industry to a higher level there are challenges to be faced. Shortage of workers willing to work the farm for harvesting oil palm has given pain to manage oil palm plantations. Many have complained about the difficulty of hiring foreign workers and a high cost. Although there are tools that can be used to collect or transfer the proceeds of oil palm fruits such as carts available. However, these tools still have the disadvantage that requires high manpower to operate. Moreover, it is not suitable for all land surfaces and limited cargo space. Workload and manpower dependence has an impact on farmers' income

    Knowledge-based processing for aircraft flight control

    Get PDF
    This Contractor Report documents research in Intelligent Control using knowledge-based processing in a manner dual to methods found in the classic stochastic decision, estimation, and control discipline. Such knowledge-based control has also been called Declarative, and Hybid. Software architectures were sought, employing the parallelism inherent in modern object-oriented modeling and programming. The viewpoint adopted was that Intelligent Control employs a class of domain-specific software architectures having features common over a broad variety of implementations, such as management of aircraft flight, power distribution, etc. As much attention was paid to software engineering issues as to artificial intelligence and control issues. This research considered that particular processing methods from the stochastic and knowledge-based worlds are duals, that is, similar in a broad context. They provide architectural design concepts which serve as bridges between the disparate disciplines of decision, estimation, control, and artificial intelligence. This research was applied to the control of a subsonic transport aircraft in the airport terminal area

    Neuro-fuzzy software for intelligent control and education

    Get PDF
    Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores (Major Automação). Faculdade de Engenharia. Universidade do Porto. 200

    Defining Domain Language of Graphical User Interfaces

    Get PDF
    Domain-specific languages are computer (programming, modeling, specification) languages devoted to solving problems in a specific domain. The least examined DSL development phases are analysis and design. Various formal methodologies exist, however domain analysis is still done informally most of the time. There are also methodologies of deriving DSLs from existing ontologies but the presumption is to have an ontology for the specific domain. We propose a solution of a user interface driven domain analysis and we focus on how it can be incorporated into the DSL design phase. We will present the preliminary results of the DEAL prototype, which can be used to transform GUIs to DSL grammars incorporating concepts from a domain and thus to help in the preliminary phases of the DSL design

    Implementation of genetic algorithm based fuzzy logic controller with automatic rule extraction in FPGA

    Get PDF
    A number of fuzzy logic controllers are being designed till now to replace complex, non-linear and huge controlling equipment in numerous industrial sectors. But the designing of these controllers requires thorough knowledge about the controlled process. For this purpose a highly experienced experts are required, which is not feasible all the time. Most of these processes are non-linear and depend on large number of parameters. Thus mathematical representation of these systems is an arduous line of work. This project addresses these problems by proposing using of genetic algorithm based Fuzzy Logic systems as controllers. The system includes algorithms which are run on a capable computing platform, to read an experimental data sheet obtained from experimental observations of the system and generate a fine tuned rule base that is to be used in the fuzzy logic controller hardware. The hardware is implemented in an FPGA. Transfer of synthesized rule base from the computer to the FPGA implementation and crisp output value back to the computer is done by UART. A graphical user interface is provided that runs on the computer

    Development of FPGA based Standalone Tunable Fuzzy Logic Controllers

    Get PDF
    Soft computing techniques differ from conventional (hard) computing, in that unlike hard computing, it is tolerant of imprecision, uncertainty, partial truth, and approximation. In effect, the role model for soft computing is the human mind and its ability to address day-to-day problems. The principal constituents of Soft Computing (SC) are Fuzzy Logic (FL), Evolutionary Computation (EC), Machine Learning (ML) and Artificial Neural Networks (ANNs). This thesis presents a generic hardware architecture for type-I and type-II standalone tunable Fuzzy Logic Controllers (FLCs) in Field Programmable Gate Array (FPGA). The designed FLC system can be remotely configured or tuned according to expert operated knowledge and deployed in different applications to replace traditional Proportional Integral Derivative (PID) controllers. This re-configurability is added as a feature to existing FLCs in literature. The FLC parameters which are needed for tuning purpose are mainly input range, output range, number of inputs, number of outputs, the parameters of the membership functions like slope and center points, and an If-Else rule base for the fuzzy inference process. Online tuning enables users to change these FLC parameters in real-time and eliminate repeated hardware programming whenever there is a need to change. Realization of these systems in real-time is difficult as the computational complexity increases exponentially with an increase in the number of inputs. Hence, the challenge lies in reducing the rule base significantly such that the inference time and the throughput time is perceivable for real-time applications. To achieve these objectives, Modified Rule Active 2 Overlap Membership Function (MRA2-OMF), Modified Rule Active 3 Overlap Membership Function (MRA3-OMF), Modified Rule Active 4 Overlap Membership Function (MRA4-OMF), and Genetic Algorithm (GA) base rule optimization methods are proposed and implemented. These methods reduce the effective rules without compromising system accuracy and improve the cycle time in terms of Fuzzy Logic Inferences Per Second (FLIPS). In the proposed system architecture, the FLC is segmented into three independent modules, fuzzifier, inference engine with rule base, and defuzzifier. Fuzzy systems employ fuzzifier to convert the real world crisp input into the fuzzy output. In type 2 fuzzy systems there are two fuzzifications happen simultaneously from upper and lower membership functions (UMF and LMF) with subtractions and divisions. Non-restoring, very high radix, and newton raphson approximation are most widely used division algorithms in hardware implementations. However, these prevalent methods have a cost of more latency. In order to overcome this problem, a successive approximation division algorithm based type 2 fuzzifier is introduced. It has been observed that successive approximation based fuzzifier computation is faster than the other type 2 fuzzifier. A hardware-software co-design is established on Virtex 5 LX110T FPGA board. The MATLAB Graphical User Interface (GUI) acquires the fuzzy (type 1 or type 2) parameters from users and a Universal Asynchronous Receiver/Transmitter (UART) is dedicated to data communication between the hardware and the fuzzy toolbox. This GUI is provided to initiate control, input, rule transfer, and then to observe the crisp output on the computer. A proposed method which can support canonical fuzzy IF-THEN rules, which includes special cases of the fuzzy rule base is included in Digital Fuzzy Logic Controller (DFLC) architecture. For this purpose, a mealy state machine is incorporated into the design. The proposed FLCs are implemented on Xilinx Virtex-5 LX110T. DFLC peripheral integration with Micro-Blaze (MB) processor through Processor Logic Bus (PLB) is established for Intellectual Property (IP) core validation. The performance of the proposed systems are compared to Fuzzy Toolbox of MATLAB. Analysis of these designs is carried out by using Hardware-In-Loop (HIL) test to control various plant models in MATLAB/Simulink environments
    corecore