676 research outputs found

    Description and Experience of the Clinical Testbeds

    Get PDF
    This deliverable describes the up-to-date technical environment at three clinical testbed demonstrator sites of the 6WINIT Project, including the adapted clinical applications, project components and network transition technologies in use at these sites after 18 months of the Project. It also provides an interim description of early experiences with deployment and usage of these applications, components and technologies, and their clinical service impact

    Description of Implementations of the Clinical Testbed Applications [83 pages]

    Get PDF

    Security Enhancement of Route Optimization in Mobile IPv6 Networks

    Get PDF
    Mobile IPv6 is an IP-layer protocol that is designed to provide mobility support.It allows an IPv6 node to arbitrarily change its location in the IPv6 network while maintaining the existing connection by handling the change of addresses at the Internet layer. Route optimization is standard in Mobile IPv6 to eliminate inefficient triangle routing. Several methods were proposed to secure route optimization. Return routability was adopted by Internet Engineering Task Force (IETF) with its security protocol based on RFC 3775. Return routability is an infrastructureless, lightweight procedure that enables a Mobile IPv6 node to request another IPv6 node to check and test the ownership of its permanent address in both home network and current visited network. It authorizes a binding procedure by the use of cryptographically token exchange. However, return routability protocol in route optimization is to protect messages and is not able to detect or prevent an attacker which tampers against data. In this thesis, focus is given on Mobile IPv6 route optimization test-bed with enhanced security in terms of data integrity. The proposed method can be performed on top of the return routability procedure to detect and prevent Man-In-The-Middle attack by using encryption if any attack is detected. This also eliminates the additional delay compared to using encryption from the beginning of a connection. A real-time experimental test-bed has been set up, which is comprised of hardware, software and network analysis tools to monitor the packet flow and content of data packets. The test-bed consists of four computers acting as Mobile Node, Home Agent, Correspondent Node, and Router, respectively. To ensure the accuracy and integrity of the collected data, the Network Time Protocol (NTP) was used between the packet generator (Mobile Node) and packet receiver (Correspondent Node) to synchronize the time. The results show that the proposed method is able to work efficiently, maintaining 99% data security of route optimization in Mobile IPv6 (MIPv6) networks. The overall data integrity (by means of security) is improved 72% compared to existing MIPv6 by at a cost of 0.1 sec added overall delay, which is within the tolerable range by the network

    SECURITY MEASUREMENT FOR LTE/SAE NETWORK DURING SINGLE RADIO VOICE CALL CONTINUITY (SRVCC).

    Get PDF
    Voice has significant place in mobile communication networks. Though data applications have extensively gained in importance over the years but voice is still a major source of revenue for mobile operators. It is obvious that voice will remain an important application even in the era of Long Term Evolution (LTE). Basically LTE is an all-IP data-only transport technology using packet switching. Therefore, it introduces challenges to satisfy quality of service expectations for circuit-switched mobile telephony and SMS for LTE capable smartphones, while being served on the LTE network. Since 2013, mobile operators have been busy deploying Voice Over LTE (VoLTE). They are relying on a VoLTE technology called Single Radio Voice Call Continuity (SRVCC) for seamless handover between packet-switch domain to circuit-switch domain or vice versa. The aim of thesis is to review and identify the security measurement during SRVCC and verify test data for ciphering and integrity algorithm.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    SECURITY MEASUREMENT FOR LTE/SAE NETWORK DURING SINGLE RADIO VOICE CALL CONTINUITY (SRVCC).

    Get PDF
    Voice has significant place in mobile communication networks. Though data applications have extensively gained in importance over the years but voice is still a major source of revenue for mobile operators. It is obvious that voice will remain an important application even in the era of Long Term Evolution (LTE). Basically LTE is an all-IP data-only transport technology using packet switching. Therefore, it introduces challenges to satisfy quality of service expectations for circuit-switched mobile telephony and SMS for LTE capable smartphones, while being served on the LTE network. Since 2013, mobile operators have been busy deploying Voice Over LTE (VoLTE). They are relying on a VoLTE technology called Single Radio Voice Call Continuity (SRVCC) for seamless handover between packet-switch domain to circuit-switch domain or vice versa. The aim of thesis is to review and identify the security measurement during SRVCC and verify test data for ciphering and integrity algorithm.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    A framework for secure mobility in wireless overlay networks

    Get PDF
    Various wireless networks are widely deployed world wide. Current technologies employed in these networks vary widely in terms of bandwidths, latencies, frequencies, and media access methods. Most existing wireless network technologies can be divided into two categories: those that provide a low-bandwidth service over a wide geographic area, for example UMTS, and those that provide a high bandwidth service over a narrow geographic area, for example 802.11. Although it would be desirable to provide a high- bandwidth service over a wide coverage region to mobile users all the time, no single wireless network technology simultaneously satisfies these require- ments. Wireless Overlay Networks, a hierarchical structure of wireless personal area, local area, and wide area data networks, is considered as an efficient and scalable way to solve this problem. Due to the wide deployment of UMTS and 802.11 WLAN, this study attempts to combine them to implement the concept of Wireless Overlay Net- works. Furthermore, the information transmitted over this Wireless Overlay Networks is protected in terms of authentication, integrity and confidentiality. To achieve this goal, this study aims to combine GPRS, Mobile IP and IPSec to propose a framework for secure mobility in Wireless Overlay Networks. The framework is developed in three steps: Firstly, this study addresses the problem of combining GPRS and Mo- bile IP, so that GPRS users are provided with Mobile IP service. This results in presenting a uniform Mobile IP interface to peers regardless of whether mobile users use UMTS or 802.11 WLAN. Secondly, this study discovers the existing problem when combining Mobile IP and IPSec, and proposes a Dual Home Agent Architecture to achieve secure mobility. Finally, based on the output of the previous two steps, a complete framework is proposed, which achieves secure mobility in Wireless Overlay Networks, specifically, in UMTS and 802.11 WLAN. The framework also implements seamless handover when mobile users switch between UMTS and 802.11. This results in UMTS and 802.11 WLAN looking like a single network when participating in this framework, and presents seamless and secure mobility

    CPA\u27s guide to wireless technology and networking

    Get PDF
    https://egrove.olemiss.edu/aicpa_guides/1303/thumbnail.jp

    Security Analysis of the Evolved Packet Core for LTE Networks

    Get PDF
    Originally cellular networks handled calls and short messages only. Today, this has been extended to handle packet data services. However now the world is moving towards an entirely IP based mobile service based on LTE and the Evolved Packet Core. Security becomes even more important than before. Cellular networks will be using the same technology that runs the Internet, which could leave them open to a range of threats from the air interface side of the network, especially with the popularity of smart phones and USB "Mobile Broadband" modems. This thesis investigated a range of network protocols used in the Evolved Packet Core, as well as the possibility of attacks against these networks and their protocols and whether such attacks can be achieved, especially from cheap handheld devices. Further this thesis presents results showing that these network protocols are free from serious flaws in their specification
    corecore