43 research outputs found

    Processing of Sliding Spotlight and TOPS SAR Data Using Baseband Azimuth Scaling

    Get PDF
    This paper presents an efficient phase preserving processor for the focusing of data acquired in sliding spotlight and TOPS (Terrain Observation by Progressive Scans) imaging modes. They share in common a linear variation of the Doppler centroid along the azimuth dimension, which is due to a steering of the antenna (either mechanically or electronically) throughout the data take. Existing approaches for the azimuth processing can become inefficient due to the additional processing to overcome the folding in the focused domain. In this paper a new azimuth scaling approach is presented to perform the azimuth processing, whose kernel is exactly the same for sliding spotlight and TOPS modes. The possibility to use the proposed approach to process ScanSAR data, as well as a discussion concerning staring spotlight, are also included. Simulations with point-targets and real data acquired by TerraSAR-X in sliding spotlight and TOPS modes are used to validate the developed algorithm

    Remote Sensing Image Classification Using Attribute Filters Defined over the Tree of Shapes

    Get PDF
    International audience—Remotely sensed images with very high spatial resolution provide a detailed representation of the surveyed scene with a geometrical resolution that at the present can be up to 30 cm (WorldView-3). A set of powerful image processing operators have been defined in the mathematical morphology framework. Among those, connected operators (e.g., attribute filters) have proven their effectiveness in processing very high resolution images. Attribute filters are based on attributes which can be efficiently implemented on tree-based image representations. In this work, we considered the definition of min, max, direct and subtractive filter rules for the computation of attribute filters over the tree of shapes representation. We study their performance on the classification of remotely sensed images. We compare the classification results over the tree of shapes with the results obtained when the same rules are applied on the component trees. The random forest is used as a baseline classifier and the experiments are conducted using multispectral data sets acquired by QuickBird and IKONOS sensors over urban areas

    DAEN: Deep Autoencoder Networks for Hyperspectral Unmixing

    Get PDF

    GAUSS: Guided Encoder-Decoder Architecture for Hyperspectral Unmixing with Spatial Smoothness

    Full text link
    In recent hyperspectral unmixing (HU) literature, the application of deep learning (DL) has become more prominent, especially with the autoencoder (AE) architecture. We propose a split architecture and use a pseudo-ground truth for abundances to guide the `unmixing network' (UN) optimization. Preceding the UN, an `approximation network' (AN) is proposed, which will improve the association between the centre pixel and its neighbourhood. Hence, it will accentuate spatial correlation in the abundances as its output is the input to the UN and the reference for the `mixing network' (MN). In the Guided Encoder-Decoder Architecture for Hyperspectral Unmixing with Spatial Smoothness (GAUSS), we proposed using one-hot encoded abundances as the pseudo-ground truth to guide the UN; computed using the k-means algorithm to exclude the use of prior HU methods. Furthermore, we release the single-layer constraint on MN by introducing the UN generated abundances in contrast to the standard AE for HU. Secondly, we experimented with two modifications on the pre-trained network using the GAUSS method. In GAUSSblind_\textit{blind}, we have concatenated the UN and the MN to back-propagate the reconstruction error gradients to the encoder. Then, in the GAUSSprime_\textit{prime}, abundance results of a signal processing (SP) method with reliable abundance results were used as the pseudo-ground truth with the GAUSS architecture. According to quantitative and graphical results for four experimental datasets, the three architectures either transcended or equated the performance of existing HU algorithms from both DL and SP domains.Comment: 16 pages, 6 figure

    Advanced Multi-Sensor Optical Remote Sensing for Urban Land Use and Land Cover Classification: Outcome of the 2018 IEEE GRSS Data Fusion Contest

    Get PDF
    This paper presents the scientific outcomes of the 2018 Data Fusion Contest organized by the Image Analysis and Data Fusion Technical Committee of the IEEE Geoscience and Remote Sensing Society. The 2018 Contest addressed the problem of urban observation and monitoring with advanced multi-source optical remote sensing (multispectral LiDAR, hyperspectral imaging, and very high-resolution imagery). The competition was based on urban land use and land cover classification, aiming to distinguish between very diverse and detailed classes of urban objects, materials, and vegetation. Besides data fusion, it also quantified the respective assets of the novel sensors used to collect the data. Participants proposed elaborate approaches rooted in remote-sensing, and also in machine learning and computer vision, to make the most of the available data. Winning approaches combine convolutional neural networks with subtle earth-observation data scientist expertise

    Fusion of Hyperspectral and LiDAR Data Using Sparse and Low-Rank Component Analysis

    Get PDF
    The availability of diverse data captured over the same region makes it possible to develop multisensor data fusion techniques to further improve the discrimination ability of classifiers. In this paper, a new sparse and low-rank technique is proposed for the fusion of hyperspectral and light detection and ranging (LiDAR)-derived features. The proposed fusion technique consists of two main steps. First, extinction profiles are used to extract spatial and elevation information from hyperspectral and LiDAR data, respectively. Then, the sparse and low-rank technique is utilized to estimate the low-rank fused features from the extracted ones that are eventually used to produce a final classification map. The proposed approach is evaluated over an urban data set captured over Houston, USA, and a rural one captured over Trento, Italy. Experimental results confirm that the proposed fusion technique outperforms the other techniques used in the experiments based on the classification accuracies obtained by random forest and support vector machine classifiers. Moreover, the proposed approach can effectively classify joint LiDAR and hyperspectral data in an ill-posed situation when only a limited number of training samples are available

    Effects of foam on ocean surface microwave emission inferred from radiometric observations of reproducible breaking waves

    Get PDF
    Includes bibliographical references.WindSat, the first satellite polarimetric microwave radiometer, and the NPOESS Conical Microwave Imager/Sounder both have as a key objective the retrieval of the ocean surface wind vector from radiometric brightness temperatures. Available observations and models to date show that the wind direction signal is only 1-3 K peak-to-peak at 19 and 37 GHz, much smaller than the wind speed signal. In order to obtain sufficient accuracy for reliable wind direction retrieval, uncertainties in geophysical modeling of the sea surface emission on the order of 0.2 K need to be removed. The surface roughness spectrum has been addressed by many studies, but the azimuthal signature of the microwave emission from breaking waves and foam has not been adequately addressed. RECENtly, a number of experiments have been conducted to quantify the increase in sea surface microwave emission due to foam. Measurements from the Floating Instrumentation Platform indicated that the increase in ocean surface emission due to breaking waves may depend on the incidence and azimuth angles of observation. The need to quantify this dependence motivated systematic measurement of the microwave emission from reproducible breaking waves as a function of incidence and azimuth angles. A number of empirical parameterizations of whitecap coverage with wind speed were used to estimate the increase in brightness temperatures measured by a satellite microwave radiometer due to wave breaking in the field of view. These results provide the first empirically based parameterization with wind speed of the effect of breaking waves and foam on satellite brightness temperatures at 10.8, 19, and 37 GHz.This work was supported in part by the Department of the Navy, Office of Naval Research under Awards N00014-00-1-0615 (ONR/YIP) and N00014-03-1-0044 (Space and Remote Sensing) to the University of Massachusetts Amherst, and N00014-00-1-0152 (Space and Remote Sensing) to the University of Washington. The National Polar-orbiting Operational environmental Satellite System Integrated Program Office supported the Naval Research Laboratory's participation through Award NA02AANEG0338 and supported data analysis at Colorado State University and the University of Washington through Award NA05AANEG0153

    On the potential of empirical mode decomposition for RFI mitigation in microwave radiometry

    Get PDF
    Radio-frequency interference (RFI) is an increasing problem particularly for Earth observation using microwave radiometry. RFI has been observed, for example, at L-band by the European Space Agency’s (ESA’s) soil moisture and ocean salinity (SMOS) Earth Explorer and by National Aeronautics and Space Administration’s (NASA’s) soil moisture active passive (SMAP) and Aquarius missions, as well as at C-band by Advanced Microwave Scanning Radiometer (AMSR)-E and AMSR-2, and at 10.7 and 18.7 GHz by AMSR-E, AMSR-2, WindSat, and GPM Microwave Imager (GMI). Therefore, systems dedicated to interference detection and removal of contaminated measurements are nowadays a must in order to improve radiometric accuracy and reduce the loss of spatial coverage caused by interference. In this work, the feasibility of using the empirical mode decomposition (EMD) technique for RFI mitigation is explored. The EMD, also known as Hilbert–Huang transform (HHT), is an algorithm that decomposes the signal into intrinsic mode functions (IMFs). The achieved performance is analyzed, and the opportunities and caveats that this type of methods present are described. EMD is found to be a practical RFI mitigation method, albeit presenting some limitations and considerable complexity. Nevertheless, in some conditions, EMD exhibits a better performance than other commonly used methods (such as frequency binning). In particular, it has been found that EMD performs well for RFI affecting the <25% lower part of the intermediate frequency (IF) bandwidth.This work was supported in part by the Sensing With Pioneering Opportunistic Techniques (SPOT) under Grant RTI2018-099008-B-C21/ AEI/10.13039/501100011033, in part by the RYC-2016-20918 under Grant MCIN/AEI/10.13039/501100011033, and in part by the European Social Fund (ESF), Investing in your future.Peer ReviewedPostprint (author's final draft

    GNSS transpolar earth reflectometry exploriNg system (G-TERN): mission concept

    Get PDF
    The global navigation satellite system (GNSS) Transpolar Earth Reflectometry exploriNg system (G-TERN) was proposed in response to ESA's Earth Explorer 9 revised call by a team of 33 multi-disciplinary scientists. The primary objective of the mission is to quantify at high spatio-temporal resolution crucial characteristics, processes and interactions between sea ice, and other Earth system components in order to advance the understanding and prediction of climate change and its impacts on the environment and society. The objective is articulated through three key questions. 1) In a rapidly changing Arctic regime and under the resilient Antarctic sea ice trend, how will highly dynamic forcings and couplings between the various components of the ocean, atmosphere, and cryosphere modify or influence the processes governing the characteristics of the sea ice cover (ice production, growth, deformation, and melt)? 2) What are the impacts of extreme events and feedback mechanisms on sea ice evolution? 3) What are the effects of the cryosphere behaviors, either rapidly changing or resiliently stable, on the global oceanic and atmospheric circulation and mid-latitude extreme events? To contribute answering these questions, G-TERN will measure key parameters of the sea ice, the oceans, and the atmosphere with frequent and dense coverage over polar areas, becoming a “dynamic mapper”of the ice conditions, the ice production, and the loss in multiple time and space scales, and surrounding environment. Over polar areas, the G-TERN will measure sea ice surface elevation (<;10 cm precision), roughness, and polarimetry aspects at 30-km resolution and 3-days full coverage. G-TERN will implement the interferometric GNSS reflectometry concept, from a single satellite in near-polar orbit with capability for 12 simultaneous observations. Unlike currently orbiting GNSS reflectometry missions, the G-TERN uses the full GNSS available bandwidth to improve its ranging measurements. The lifetime would be 2025-2030 or optimally 2025-2035, covering key stages of the transition toward a nearly ice-free Arctic Ocean in summer. This paper describes the mission objectives, it reviews its measurement techniques, summarizes the suggested implementation, and finally, it estimates the expected performance.Peer ReviewedPostprint (published version
    corecore