615,169 research outputs found

    A nonmonotone GRASP

    Get PDF
    A greedy randomized adaptive search procedure (GRASP) is an itera- tive multistart metaheuristic for difficult combinatorial optimization problems. Each GRASP iteration consists of two phases: a construction phase, in which a feasible solution is produced, and a local search phase, in which a local optimum in the neighborhood of the constructed solution is sought. Repeated applications of the con- struction procedure yields different starting solutions for the local search and the best overall solution is kept as the result. The GRASP local search applies iterative improvement until a locally optimal solution is found. During this phase, starting from the current solution an improving neighbor solution is accepted and considered as the new current solution. In this paper, we propose a variant of the GRASP framework that uses a new “nonmonotone” strategy to explore the neighborhood of the current solu- tion. We formally state the convergence of the nonmonotone local search to a locally optimal solution and illustrate the effectiveness of the resulting Nonmonotone GRASP on three classical hard combinatorial optimization problems: the maximum cut prob- lem (MAX-CUT), the weighted maximum satisfiability problem (MAX-SAT), and the quadratic assignment problem (QAP)

    Densely Supervised Grasp Detector (DSGD)

    Full text link
    This paper presents Densely Supervised Grasp Detector (DSGD), a deep learning framework which combines CNN structures with layer-wise feature fusion and produces grasps and their confidence scores at different levels of the image hierarchy (i.e., global-, region-, and pixel-levels). % Specifically, at the global-level, DSGD uses the entire image information to predict a grasp. At the region-level, DSGD uses a region proposal network to identify salient regions in the image and predicts a grasp for each salient region. At the pixel-level, DSGD uses a fully convolutional network and predicts a grasp and its confidence at every pixel. % During inference, DSGD selects the most confident grasp as the output. This selection from hierarchically generated grasp candidates overcomes limitations of the individual models. % DSGD outperforms state-of-the-art methods on the Cornell grasp dataset in terms of grasp accuracy. % Evaluation on a multi-object dataset and real-world robotic grasping experiments show that DSGD produces highly stable grasps on a set of unseen objects in new environments. It achieves 97% grasp detection accuracy and 90% robotic grasping success rate with real-time inference speed
    • …
    corecore