261 research outputs found

    Fast network centrality analysis using GPUs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With the exploding volume of data generated by continuously evolving high-throughput technologies, biological network analysis problems are growing larger in scale and craving for more computational power. General Purpose computation on Graphics Processing Units (GPGPU) provides a cost-effective technology for the study of large-scale biological networks. Designing algorithms that maximize data parallelism is the key in leveraging the power of GPUs.</p> <p>Results</p> <p>We proposed an efficient data parallel formulation of the All-Pairs Shortest Path problem, which is the key component for shortest path-based centrality computation. A betweenness centrality algorithm built upon this formulation was developed and benchmarked against the most recent GPU-based algorithm. Speedup between 11 to 19% was observed in various simulated scale-free networks. We further designed three algorithms based on this core component to compute closeness centrality, eccentricity centrality and stress centrality. To make all these algorithms available to the research community, we developed a software package <it>gpu</it>-<it>fan </it>(GPU-based Fast Analysis of Networks) for CUDA enabled GPUs. Speedup of 10-50× compared with CPU implementations was observed for simulated scale-free networks and real world biological networks.</p> <p>Conclusions</p> <p><it>gpu</it>-<it>fan </it>provides a significant performance improvement for centrality computation in large-scale networks. Source code is available under the GNU Public License (GPL) at <url>http://bioinfo.vanderbilt.edu/gpu-fan/</url>.</p

    Proceedings, MSVSCC 2014

    Get PDF
    Proceedings of the 8th Annual Modeling, Simulation & Visualization Student Capstone Conference held on April 17, 2014 at VMASC in Suffolk, Virginia

    Deep Model for Improved Operator Function State Assessment

    Get PDF
    A deep learning framework is presented for engagement assessment using EEG signals. Deep learning is a recently developed machine learning technique and has been applied to many applications. In this paper, we proposed a deep learning strategy for operator function state (OFS) assessment. Fifteen pilots participated in a flight simulation from Seattle to Chicago. During the four-hour simulation, EEG signals were recorded for each pilot. We labeled 20- minute data as engaged and disengaged to fine-tune the deep network and utilized the remaining vast amount of unlabeled data to initialize the network. The trained deep network was then used to assess if a pilot was engaged during the four-hour simulation

    JGraphT -- A Java library for graph data structures and algorithms

    Full text link
    Mathematical software and graph-theoretical algorithmic packages to efficiently model, analyze and query graphs are crucial in an era where large-scale spatial, societal and economic network data are abundantly available. One such package is JGraphT, a programming library which contains very efficient and generic graph data-structures along with a large collection of state-of-the-art algorithms. The library is written in Java with stability, interoperability and performance in mind. A distinctive feature of this library is the ability to model vertices and edges as arbitrary objects, thereby permitting natural representations of many common networks including transportation, social and biological networks. Besides classic graph algorithms such as shortest-paths and spanning-tree algorithms, the library contains numerous advanced algorithms: graph and subgraph isomorphism; matching and flow problems; approximation algorithms for NP-hard problems such as independent set and TSP; and several more exotic algorithms such as Berge graph detection. Due to its versatility and generic design, JGraphT is currently used in large-scale commercial, non-commercial and academic research projects. In this work we describe in detail the design and underlying structure of the library, and discuss its most important features and algorithms. A computational study is conducted to evaluate the performance of JGraphT versus a number of similar libraries. Experiments on a large number of graphs over a variety of popular algorithms show that JGraphT is highly competitive with other established libraries such as NetworkX or the BGL.Comment: Major Revisio

    Proceedings, MSVSCC 2013

    Get PDF
    Proceedings of the 7th Annual Modeling, Simulation & Visualization Student Capstone Conference held on April 11, 2013 at VMASC in Suffolk, Virginia

    Efficient Comparison of Massive Graphs Through The Use Of 'Graph Fingerprints'

    Get PDF
    The problem of how to compare empirical graphs is an area of great interest within the field of network science. The ability to accurately but efficiently compare graphs has a significant impact in such areas as temporal graph evolution, anomaly detection and protein comparison. The comparison problem is compounded when working with graphs containing millions of anonymous, i.e. unlabelled, vertices and edges. Comparison of two or more graphs is highly computationally expensive. Thus reducing a graph to a much smaller feature set – called a fingerprint, which accurately captures the essence of the graph would be highly desirable. Such an approach would have potential applications outside of graph comparisons, especially in the area of machine learning. This paper introduces a feature extraction based approach for the efficient comparison of large topologically similar, but order varying, unlabelled graph datasets. The approach acts by producing a ‘Graph Fingerprint’ which represents both vertex level and global level topological features from a graph. The approach is shown to be efficient when comparing graphs which are highly topologically similar but order varying. The approach scales linearly with the size and complexity of the graphs being fingerprinted

    Computation in Complex Networks

    Get PDF
    Complex networks are one of the most challenging research focuses of disciplines, including physics, mathematics, biology, medicine, engineering, and computer science, among others. The interest in complex networks is increasingly growing, due to their ability to model several daily life systems, such as technology networks, the Internet, and communication, chemical, neural, social, political and financial networks. The Special Issue “Computation in Complex Networks" of Entropy offers a multidisciplinary view on how some complex systems behave, providing a collection of original and high-quality papers within the research fields of: • Community detection • Complex network modelling • Complex network analysis • Node classification • Information spreading and control • Network robustness • Social networks • Network medicin

    JTIT

    Get PDF
    kwartalni
    • …
    corecore