17 research outputs found

    Highly Parallel Geometric Characterization and Visualization of Volumetric Data Sets

    Get PDF
    Volumetric 3D data sets are being generated in many different application areas. Some examples are CAT scans and MRI data, 3D models of protein molecules represented by implicit surfaces, multi-dimensional numeric simulations of plasma turbulence, and stacks of confocal microscopy images of cells. The size of these data sets has been increasing, requiring the speed of analysis and visualization techniques to also increase to keep up. Recent advances in processor technology have stopped increasing clock speed and instead begun increasing parallelism, resulting in multi-core CPUS and many-core GPUs. To take advantage of these new parallel architectures, algorithms must be explicitly written to exploit parallelism. In this thesis we describe several algorithms and techniques for volumetric data set analysis and visualization that are amenable to these modern parallel architectures. We first discuss modeling volumetric data with Gaussian Radial Basis Functions (RBFs). RBF representation of a data set has several advantages, including lossy compression, analytic differentiability, and analytic application of Gaussian blur. We also describe a parallel volume rendering algorithm that can create images of the data directly from the RBF representation. Next we discuss a parallel, stochastic algorithm for measuring the surface area of volumetric representations of molecules. The algorithm is suitable for implementation on a GPU and is also progressive, allowing it to return a rough answer almost immediately and refine the answer over time to the desired level of accuracy. After this we discuss the concept of Confluent Visualization, which allows the visualization of the interaction between a pair of volumetric data sets. The interaction is visualized through volume rendering, which is well suited to implementation on parallel architectures. Finally we discuss a parallel, stochastic algorithm for classifying stem cells as having been grown on a surface that induces differentiation or on a surface that does not induce differentiation. The algorithm takes as input 3D volumetric models of the cells generated from confocal microscopy. This algorithm builds on our algorithm for surface area measurement and, like that algorithm, this algorithm is also suitable for implementation on a GPU and is progressive

    Accurate geometry reconstruction of vascular structures using implicit splines

    Get PDF
    3-D visualization of blood vessel from standard medical datasets (e.g. CT or MRI) play an important role in many clinical situations, including the diagnosis of vessel stenosis, virtual angioscopy, vascular surgery planning and computer aided vascular surgery. However, unlike other human organs, the vasculature system is a very complex network of vessel, which makes it a very challenging task to perform its 3-D visualization. Conventional techniques of medical volume data visualization are in general not well-suited for the above-mentioned tasks. This problem can be solved by reconstructing vascular geometry. Although various methods have been proposed for reconstructing vascular structures, most of these approaches are model-based, and are usually too ideal to correctly represent the actual variation presented by the cross-sections of a vascular structure. In addition, the underlying shape is usually expressed as polygonal meshes or in parametric forms, which is very inconvenient for implementing ramification of branching. As a result, the reconstructed geometries are not suitable for computer aided diagnosis and computer guided minimally invasive vascular surgery. In this research, we develop a set of techniques associated with the geometry reconstruction of vasculatures, including segmentation, modelling, reconstruction, exploration and rendering of vascular structures. The reconstructed geometry can not only help to greatly enhance the visual quality of 3-D vascular structures, but also provide an actual geometric representation of vasculatures, which can provide various benefits. The key findings of this research are as follows: 1. A localized hybrid level-set method of segmentation has been developed to extract the vascular structures from 3-D medical datasets. 2. A skeleton-based implicit modelling technique has been proposed and applied to the reconstruction of vasculatures, which can achieve an accurate geometric reconstruction of the vascular structures as implicit surfaces in an analytical form. 3. An accelerating technique using modern GPU (Graphics Processing Unit) is devised and applied to rendering the implicitly represented vasculatures. 4. The implicitly modelled vasculature is investigated for the application of virtual angioscopy

    Efficient and High-Quality Rendering of Higher-Order Geometric Data Representations

    Get PDF
    Computer-Aided Design (CAD) bezeichnet den Entwurf industrieller Produkte mit Hilfe von virtuellen 3D Modellen. Ein CAD-Modell besteht aus parametrischen Kurven und Flächen, in den meisten Fällen non-uniform rational B-Splines (NURBS). Diese mathematische Beschreibung wird ebenfalls zur Analyse, Optimierung und Präsentation des Modells verwendet. In jeder dieser Entwicklungsphasen wird eine unterschiedliche visuelle Darstellung benötigt, um den entsprechenden Nutzern ein geeignetes Feedback zu geben. Designer bevorzugen beispielsweise illustrative oder realistische Darstellungen, Ingenieure benötigen eine verständliche Visualisierung der Simulationsergebnisse, während eine immersive 3D Darstellung bei einer Benutzbarkeitsanalyse oder der Designauswahl hilfreich sein kann. Die interaktive Darstellung von NURBS-Modellen und -Simulationsdaten ist jedoch aufgrund des hohen Rechenaufwandes und der eingeschränkten Hardwareunterstützung eine große Herausforderung. Diese Arbeit stellt vier neuartige Verfahren vor, welche sich mit der interaktiven Darstellung von NURBS-Modellen und Simulationensdaten befassen. Die vorgestellten Algorithmen nutzen neue Fähigkeiten aktueller Grafikkarten aus, um den Stand der Technik bezüglich Qualität, Effizienz und Darstellungsgeschwindigkeit zu verbessern. Zwei dieser Verfahren befassen sich mit der direkten Darstellung der parametrischen Beschreibung ohne Approximationen oder zeitaufwändige Vorberechnungen. Die dabei vorgestellten Datenstrukturen und Algorithmen ermöglichen die effiziente Unterteilung, Klassifizierung, Tessellierung und Darstellung getrimmter NURBS-Flächen und einen interaktiven Ray-Casting-Algorithmus für die Isoflächenvisualisierung von NURBSbasierten isogeometrischen Analysen. Die weiteren zwei Verfahren beschreiben zum einen das vielseitige Konzept der programmierbaren Transparenz für illustrative und verständliche Visualisierungen tiefenkomplexer CAD-Modelle und zum anderen eine neue hybride Methode zur Reprojektion halbtransparenter und undurchsichtiger Bildinformation für die Beschleunigung der Erzeugung von stereoskopischen Bildpaaren. Die beiden letztgenannten Ansätze basieren auf rasterisierter Geometrie und sind somit ebenfalls für normale Dreiecksmodelle anwendbar, wodurch die Arbeiten auch einen wichtigen Beitrag in den Bereichen der Computergrafik und der virtuellen Realität darstellen. Die Auswertung der Arbeit wurde mit großen, realen NURBS-Datensätzen durchgeführt. Die Resultate zeigen, dass die direkte Darstellung auf Grundlage der parametrischen Beschreibung mit interaktiven Bildwiederholraten und in subpixelgenauer Qualität möglich ist. Die Einführung programmierbarer Transparenz ermöglicht zudem die Umsetzung kollaborativer 3D Interaktionstechniken für die Exploration der Modelle in virtuellenUmgebungen sowie illustrative und verständliche Visualisierungen tiefenkomplexer CAD-Modelle. Die Erzeugung stereoskopischer Bildpaare für die interaktive Visualisierung auf 3D Displays konnte beschleunigt werden. Diese messbare Verbesserung wurde zudem im Rahmen einer Nutzerstudie als wahrnehmbar und vorteilhaft befunden.In computer-aided design (CAD), industrial products are designed using a virtual 3D model. A CAD model typically consists of curves and surfaces in a parametric representation, in most cases, non-uniform rational B-splines (NURBS). The same representation is also used for the analysis, optimization and presentation of the model. In each phase of this process, different visualizations are required to provide an appropriate user feedback. Designers work with illustrative and realistic renderings, engineers need a comprehensible visualization of the simulation results, and usability studies or product presentations benefit from using a 3D display. However, the interactive visualization of NURBS models and corresponding physical simulations is a challenging task because of the computational complexity and the limited graphics hardware support. This thesis proposes four novel rendering approaches that improve the interactive visualization of CAD models and their analysis. The presented algorithms exploit latest graphics hardware capabilities to advance the state-of-the-art in terms of quality, efficiency and performance. In particular, two approaches describe the direct rendering of the parametric representation without precomputed approximations and timeconsuming pre-processing steps. New data structures and algorithms are presented for the efficient partition, classification, tessellation, and rendering of trimmed NURBS surfaces as well as the first direct isosurface ray-casting approach for NURBS-based isogeometric analysis. The other two approaches introduce the versatile concept of programmable order-independent semi-transparency for the illustrative and comprehensible visualization of depth-complex CAD models, and a novel method for the hybrid reprojection of opaque and semi-transparent image information to accelerate stereoscopic rendering. Both approaches are also applicable to standard polygonal geometry which contributes to the computer graphics and virtual reality research communities. The evaluation is based on real-world NURBS-based models and simulation data. The results show that rendering can be performed directly on the underlying parametric representation with interactive frame rates and subpixel-precise image results. The computational costs of additional visualization effects, such as semi-transparency and stereoscopic rendering, are reduced to maintain interactive frame rates. The benefit of this performance gain was confirmed by quantitative measurements and a pilot user study

    Doctor of Philosophy

    Get PDF
    dissertationHigh-order finite element methods, using either the continuous or discontinuous Galerkin formulation, are becoming more popular in fields such as fluid mechanics, solid mechanics and computational electromagnetics. While the use of these methods is becoming increasingly common, there has not been a corresponding increase in the availability and use of visualization methods and software that are capable of displaying visualizations of these volumes both accurately and interactively. A fundamental problem with the majority of existing visualization techniques is that they do not understand nor respect the structure of a high-order field, leading to visualization error. Visualizations of high-order fields are generally created by first approximating the field with low-order primitives and then generating the visualization using traditional methods based on linear interpolation. The approximation step introduces error into the visualization pipeline, which requires the user to balance the competing goals of image quality, interactivity and resource consumption. In practice, visualizations performed this way are often either undersampled, leading to visualization error, or oversampled, leading to unnecessary computational effort and resource consumption. Without an understanding of the sources of error, the simulation scientist is unable to determine if artifacts in the image are due to visualization error, insufficient mesh resolution, or a failure in the underlying simulation. This uncertainty makes it difficult for the scientists to make judgments based on the visualization, as judgments made on the assumption that artifacts are a result of visualization error when they are actually a more fundamental problem can lead to poor decision-making. This dissertation presents new visualization algorithms that use the high-order data in its native state, using the knowledge of the structure and mathematical properties of these fields to create accurate images interactively, while avoiding the error introduced by representing the fields with low-order approximations. First, a new algorithm for cut-surfaces is presented, specifically the accurate depiction of colormaps and contour lines on arbitrarily complex cut-surfaces. Second, a mathematical analysis of the evaluation of the volume rendering integral through a high-order field is presented, as well as an algorithm that uses this analysis to create accurate volume renderings. Finally, a new software system, the Element Visualizer (ElVis), is presented, which combines the ideas and algorithms created in this dissertation in a single software package that can be used by simulation scientists to create accurate visualizations. This system was developed and tested with the assistance of the ProjectX simulation team. The utility of our algorithms and visualization system are then demonstrated with examples from several high-order fluid flow simulations

    Ray tracing techniques for computer games and isosurface visualization

    Get PDF
    Ray tracing is a powerful image synthesis technique, that has been used for high-quality offline rendering since decades. In recent years, this technique has become more important for realtime applications, but still plays only a minor role in many areas. Some of the reasons are that ray tracing is compute intensive and has to rely on preprocessed data structures to achieve fast performance. This dissertation investigates methods to broaden the applicability of ray tracing and is divided into two parts. The first part explores the opportunities offered by ray tracing based game technology in the context of current and expected future performance levels. In this regard, novel methods are developed to efficiently support certain kinds of dynamic scenes, while avoiding the burden to fully recompute the required data structures. Furthermore, todays ray tracing performance levels are below what is needed for 3D games. Therefore, the multi-core CPU of the Playstation 3 is investigated, and an optimized ray tracing architecture presented to take steps towards the required performance. In part two, the focus shifts to isosurface raytracing. Isosurfaces are particularly important to understand the distribution of certain values in volumetric data. Since the structure of volumetric data sets is diverse, op- timized algorithms and data structures are developed for rectilinear as well as unstructured data sets which allow for realtime rendering of isosurfaces including advanced shading and visualization effects. This also includes tech- niques for out-of-core and time-varying data sets.Ray-tracing ist ein flexibles Bildgebungsverfahren, das schon seit Jahrzehnten für hoch qualitative, aber langsame Bilderzeugung genutzt wird. In den letzten Jahren wurde Ray-tracing auch für Echtzeitanwendungen immer interessanter, spielt aber in vielen Anwendungsbereichen noch immer eine untergeordnete Rolle. Einige der Gründe sind die Rechenintensität von Ray-tracing sowie die Abhängigkeit von vorberechneten Datenstrukturen um hohe Geschwindigkeiten zu erreichen. Diese Dissertation untersucht Methoden um die Anwendbarkeit von Ray-tracing in zwei verschiedenen Bereichen zu erhöhen. Im ersten Teil dieser Dissertation werden die Möglichkeiten, die Ray- tracing basierte Spieletechnologie bietet, im Kontext mit aktueller sowie zukünftig erwarteten Geschwindigkeiten untersucht. Darüber hinaus werden in diesem Zusammenhang Methoden entwickelt um bestimmte zeitveränderliche Szenen darstellen zu können ohne die dafür benötigen Datenstrukturen von Grund auf neu erstellen zu müssen. Da die Geschwindigkeit von Ray-tracing für Spiele bisher nicht ausreichend ist, wird die Mehrkern- CPU der Playstation 3 untersucht, und ein optimiertes Ray-tracing System beschrieben, das Ray-tracing näher an die benötigte Geschwindigkeit heranbringt. Der zweite Teil beschäftigt sich mit der Darstellung von Isoflächen mittels Ray-tracing. Isoflächen sind insbesonders wichtig um die Verteilung einzelner Werte in volumetrischen Datensätzen zu verstehen. Da diese Datensätze verschieden strukturiert sein können, werden für gitterförmige und unstrukturierte Datensätze optimierte Algorithmen und Datenstrukturen entwickelt, die die Echtzeitdarstellung von Isoflächen erlauben. Dies beinhaltet auch Erweiterungen für extrem große und zeitveränderliche Datensätze

    Methods for 3D Geometry Processing in the Cultural Heritage Domain

    Get PDF
    This thesis presents methods for 3D geometry processing under the aspects of cultural heritage applications. After a short overview over the relevant basics in 3D geometry processing, the present thesis investigates the digital acquisition of 3D models. A particular challenge in this context are on the one hand difficult surface or material properties of the model to be captured. On the other hand, the fully automatic reconstruction of models even with suitable surface properties that can be captured with Laser range scanners is not yet completely solved. This thesis presents two approaches to tackle these challenges. One exploits a thorough capture of the object’s appearance and a coarse reconstruction for a concise and realistic object representation even for objects with problematic surface properties like reflectivity and transparency. The other method concentrates on digitisation via Laser-range scanners and exploits 2D colour images that are typically recorded with the range images for a fully automatic registration technique. After reconstruction, the captured models are often still incomplete, exhibit holes and/or regions of insufficient sampling. In addition to that, holes are often deliberately introduced into a registered model to remove some undesired or defective surface part. In order to produce a visually appealing model, for instance for visualisation purposes, for prototype or replica production, these holes have to be detected and filled. Although completion is a well-established research field in 2D image processing and many approaches do exist for image completion, surface completion in 3D is a fairly new field of research. This thesis presents a hierarchical completion approach that employs and extends successful exemplar-based 2D image processing approaches to 3D and fills in detail-equipped surface patches into missing surface regions. In order to identify and construct suitable surface patches, selfsimilarity and coherence properties of the surface context of the hole are exploited. In addition to the reconstruction and repair, the present thesis also investigates methods for a modification of captured models via interactive modelling. In this context, modelling is regarded as a creative process, for instance for animation purposes. On the other hand, it is also demonstrated how this creative process can be used to introduce human expertise into the otherwise automatic completion process. This way, reconstructions are feasible even of objects where already the data source, the object itself, is incomplete due to corrosion, demolition, or decay.Methoden zur 3D-Geometrieverarbeitung im Kulturerbesektor In dieser Arbeit werden Methoden zur Bearbeitung von digitaler 3D-Geometrie unter besonderer Berücksichtigung des Anwendungsbereichs im Kulturerbesektor vorgestellt. Nach einem kurzen Überblick über die relevanten Grundlagen der dreidimensionalen Geometriebehandlung wird zunächst die digitale Akquise von dreidimensionalen Objekten untersucht. Eine besondere Herausforderung stellen bei der Erfassung einerseits ungünstige Oberflächen- oder Materialeigenschaften der Objekte dar (wie z.B. Reflexivität oder Transparenz), andererseits ist auch die vollautomatische Rekonstruktion von solchen Modellen, die sich verhältnismäßig problemlos mit Laser-Range Scannern erfassen lassen, immer noch nicht vollständig gelöst. Daher bilden zwei neuartige Verfahren, die diesen Herausforderungen begegnen, den Anfang. Auch nach der Registrierung sind die erfassten Datensätze in vielen Fällen unvollständig, weisen Löcher oder nicht ausreichend abgetastete Regionen auf. Darüber hinaus werden in vielen Anwendungen auch, z.B. durch Entfernen unerwünschter Oberflächenregionen, Löcher gewollt hinzugefügt. Für eine optisch ansprechende Rekonstruktion, vor allem zu Visualisierungszwecken, im Bildungs- oder Unterhaltungssektor oder zur Prototyp- und Replik-Erzeugung müssen diese Löcher zunächst automatisch detektiert und anschließend geschlossen werden. Obwohl dies im zweidimensionalen Fall der Bildbearbeitung bereits ein gut untersuchtes Forschungsfeld darstellt und vielfältige Ansätze zur automatischen Bildvervollständigung existieren, ist die Lage im dreidimensionalen Fall anders, und die Übertragung von zweidimensionalen Ansätzen in den 3D stellt vielfach eine große Herausforderung dar, die bislang keine zufriedenstellenden Lösungen erlaubt hat. Nichtsdestoweniger wird in dieser Arbeit ein hierarchisches Verfahren vorgestellt, das beispielbasierte Konzepte aus dem 2D aufgreift und Löcher in Oberflächen im 3D unter Ausnutzung von Selbstähnlichkeiten und Kohärenzeigenschaften des Oberflächenkontextes schließt. Um plausible Oberflächen zu erzeugen werden die Löcher dabei nicht nur glatt gefüllt, sondern auch feinere Details aus dem Kontext rekonstruiert. Abschließend untersucht die vorliegende Arbeit noch die Modifikation der vervollständigten Objekte durch Freiformmodellierung. Dies wird dabei zum einen als kreativer Prozess z.B. zu Animationszwecken betrachtet. Zum anderen wird aber auch untersucht, wie dieser kreative Prozess benutzt werden kann, um etwaig vorhandenes Expertenwissen in die ansonsten automatische Vervollständigung mit einfließen zu lassen. Auf diese Weise werden auch Rekonstruktionen ermöglicht von Objekten, bei denen schon die Datenquelle, also das Objekt selbst z.B. durch Korrosion oder mutwillige Zerstörung unvollständig ist

    Modeling and Visualization of Multi-material Volumes

    Get PDF
    The terminology of multi-material volumes is discussed. The classification of the multi-material volumes is given from the spatial partitions, spatial domain for material distribution, types of involved scalar fields and types of models for material distribution and composition of several materials points of view. In addition to the technical challenges of multi-material volume representations, a range of key challenges are considered before such representations can be adopted as mainstream practice

    Dense and Globally Consistent Multi-View Stereo

    Get PDF
    Multi-View Stereo (MVS) aims at reconstructing dense geometry of scenes from a set of overlapping images which are captured at different viewing angles. This thesis is devoted to addressing MVS problem by estimating depth maps, since 2D-space operations are trivially parallelizable in contrast to 3D volumetric techniques. Typical setup of depth-map-based MVS approaches consists of per-view calculation and multi-view merging. Most solutions primarily aim at the most precise and complete surfaces for individual views but relaxing the global geometry consistency. Therefore, the inconsistent estimates lead to heavy processing workload in the merging stage and diminish the final reconstruction. Another issue is the textureless areas where the photo-consistency constraint can not discriminate different depths. These matching ambiguities are normally handled by incorporating plane features or the smoothness assumption, that might produce segmentation effect or depends on accuracy and completeness of the calculated object edges. This thesis deals with two kinds of input data, photo collections and high-frame-rate videos, by developing distinct MVS algorithms based on their characteristics: For the sparsely sampled photos, we propose an advanced PatchMatch system that alternates between patch-based correlation maximization and pixel-based optimization of the cross-view consistency. Thereby we get a good trade-off between the photometric and geometric constraints. Moreover, our method achieves high efficiency by combining local pixel traversal and a hierarchical framework for fast depth propagation. For the densely sampled videos, we mainly focus on recovering the homogeneous surfaces, because the redundant scene information enables ray-level correlation which can generate shape depth discontinuities. Our approach infers smooth surfaces for the enclosed areas using perspective depth interpolation, and subsequently tackles the occlusion errors connecting the fore- and background edges. In addition, our edge depth estimation is more robust by accounting for unstructured camera trajectories. Exhaustively calculating depth maps is unfeasible when modeling large scenes from videos. This thesis further improves the reconstruction scalability using an incremental scheme via content-aware view selection and clustering. Our goal is to gradually eliminate the visibility conflicts and increase the surface coverage by processing a minimum subset of views. Constructing view clusters allows us to store merged and locally consistent points with the highest resolution, thus reducing the memory requirements. All approaches presented in the thesis do not rely on high-level techniques, so they can be easily parallelized. The evaluations on various datasets and the comparisons with existing algorithms demonstrate the superiority of our methods

    Mélange de surfaces en temps réel : visualisation, contrôle des déformations et application à la modélisation

    Get PDF
    Les surfaces implicites ont été perçues au cours des années 80, comme une alternative intéressante aux modélisations paramétriques des surfaces (NURBS, etc). Elles sont définies comme l'ensemble des points de même valeur d'un champ potentiel, c'est-à-dire la frontière de deux volumes. Ainsi elles possèdent des propriétés avantageuses dans le cadre de la modélisation géométrique: gestion automatique de la topologie, garantie de manipuler des entités manifold, possibilité de définir des transitions lisses entre des objets se fusionnant. Elles furent cependant délaissées au début des années 2000 en raison des contraintes qu'elles imposent: évaluation et affichage coûteux en temps de calcul, et forme des surfaces difficilement contrôlables. Les contributions de cette thèse proposent des solutions à ces problématiques de la modélisation par surfaces implicites. Il est tout d'abord montré qu'une nouvelle structure d'accélération, combinant les propriétés d'une hiérarchie de volumes englobants et d'un Kd-Tree, permet d'accélérer l'affichage par lancer de rayons d'un grand nombre de surfaces implicites. Il est ainsi possible d'animer en temps réel une surface de type fluide, définie par les points d'isovaleur d'un champ potentiel obtenu par la somme de primitives simples. Les opérateurs simples de composition de surfaces implicites, tels que la somme, permettent d'évaluer rapidement des champs potentiels combinant plusieurs milliers de primitives. Néanmoins, l'apparence organique des surfaces produites est difficile à contrôler. Cette thèse propose un nouveau type d'opérateur de composition, utilisant à la fois les valeurs et les gradients des champs potentiels sources, qui permet d'avoir beaucoup plus de contrôle sur la forme des surfaces produites tout en supprimant les effets indésirables des opérateurs classiques, tels que le gonflement à l'intersection de surfaces ou la fusion de surfaces proches. Enfin il est montré comment ces opérateurs de mélange peuvent être utilisés pour déformer des surfaces de type maillage, animées par un squelette. Nous définissons un champ potentiel par composition de primitives implicites générées aux arêtes du squelette. A chaque déformation du squelette, le champ potentiel est lui aussi déformé par les opérateurs de composition choisis: ces déformations peuvent être reproduites sur le maillage en déplaçant chaque sommet du maillage jusqu'à la surface d'isovaleur correspondante à leur valeur de potentiel initiale. Cette technique permet d'obtenir rapidement des déformations plausibles au niveau des articulations des membres modélisésImplicit surfaces have been considered during the eightees as a promising alternative to parametric surfaces (NURBS patches, etc...). They are defined as the set of points having the same value of a scalar field, thus spliting the space into two volumes. Their volumetric nature confers them interesting properties for geometric modeling: the topology of objects is handled automatically, geometries are guaranteed to be manifold and they can produce smooth blendings of objects easily. However, they were abandoned at the beginning of the 21st century due to the limitations they impose: they are computationally expensive to evaluate and to display, and the shape of the transition between objects is difficult to control. This thesis proposes new solutions to these problems in implicit surfaces modeling. First of all, it is shown that the use of a new object-partitioning structure, mixing the properties of a bounding volume hierarchy and a Kd-Tree, makes it possible to raytrace a large number of implicit primitives at interactive frame rates. Therefore it allows real time visualization of fluid-like shapes, defined as an isosurface of a potential field computed as the sum of simple primitives. Simple composition operators of implicit surfaces, such as the sum operator, allow a fast computation of a potential field combining thousands of primitives. Nevertheless, the shape of the resulting surfaces is organic and difficult to control. In this thesis, a new kind of composition operators is proposed, which takes both the value and the gradient of the source potential fields as input. These operators give much more control on the shape of the surfaces, and they avoid the classical problems of implicit surfaces composition, such as bulging at the intersection of two primitives or blending of surfaces at a distance. Finally, a new skeleton-based animation technique is presented which reproduces the deformations of some implicit surfaces on a given mesh. We define a potential field as the composition of implicit primitives generated at the bones of the skeleton. Thus each motion of the skeleton will cause distortions in the associated potential field. These distortions can be reproduced on the mesh by moving each of its vertices to the isosurface of the potential field corresponding to their initial potential value. This technique is able to produce rapidly realistic deformations on the limbs of an articulated model of a bod
    corecore