347 research outputs found

    NOVEL DENSE STEREO ALGORITHMS FOR HIGH-QUALITY DEPTH ESTIMATION FROM IMAGES

    Get PDF
    This dissertation addresses the problem of inferring scene depth information from a collection of calibrated images taken from different viewpoints via stereo matching. Although it has been heavily investigated for decades, depth from stereo remains a long-standing challenge and popular research topic for several reasons. First of all, in order to be of practical use for many real-time applications such as autonomous driving, accurate depth estimation in real-time is of great importance and one of the core challenges in stereo. Second, for applications such as 3D reconstruction and view synthesis, high-quality depth estimation is crucial to achieve photo realistic results. However, due to the matching ambiguities, accurate dense depth estimates are difficult to achieve. Last but not least, most stereo algorithms rely on identification of corresponding points among images and only work effectively when scenes are Lambertian. For non-Lambertian surfaces, the brightness constancy assumption is no longer valid. This dissertation contributes three novel stereo algorithms that are motivated by the specific requirements and limitations imposed by different applications. In addressing high speed depth estimation from images, we present a stereo algorithm that achieves high quality results while maintaining real-time performance. We introduce an adaptive aggregation step in a dynamic-programming framework. Matching costs are aggregated in the vertical direction using a computationally expensive weighting scheme based on color and distance proximity. We utilize the vector processing capability and parallelism in commodity graphics hardware to speed up this process over two orders of magnitude. In addressing high accuracy depth estimation, we present a stereo model that makes use of constraints from points with known depths - the Ground Control Points (GCPs) as referred to in stereo literature. Our formulation explicitly models the influences of GCPs in a Markov Random Field. A novel regularization prior is naturally integrated into a global inference framework in a principled way using the Bayes rule. Our probabilistic framework allows GCPs to be obtained from various modalities and provides a natural way to integrate information from various sensors. In addressing non-Lambertian reflectance, we introduce a new invariant for stereo correspondence which allows completely arbitrary scene reflectance (bidirectional reflectance distribution functions - BRDFs). This invariant can be used to formulate a rank constraint on stereo matching when the scene is observed by several lighting configurations in which only the lighting intensity varies

    Benchmarking 6DOF Outdoor Visual Localization in Changing Conditions

    Get PDF
    Visual localization enables autonomous vehicles to navigate in their surroundings and augmented reality applications to link virtual to real worlds. Practical visual localization approaches need to be robust to a wide variety of viewing condition, including day-night changes, as well as weather and seasonal variations, while providing highly accurate 6 degree-of-freedom (6DOF) camera pose estimates. In this paper, we introduce the first benchmark datasets specifically designed for analyzing the impact of such factors on visual localization. Using carefully created ground truth poses for query images taken under a wide variety of conditions, we evaluate the impact of various factors on 6DOF camera pose estimation accuracy through extensive experiments with state-of-the-art localization approaches. Based on our results, we draw conclusions about the difficulty of different conditions, showing that long-term localization is far from solved, and propose promising avenues for future work, including sequence-based localization approaches and the need for better local features. Our benchmark is available at visuallocalization.net.Comment: Accepted to CVPR 2018 as a spotligh

    Object-Aware Tracking and Mapping

    Get PDF
    Reasoning about geometric properties of digital cameras and optical physics enabled researchers to build methods that localise cameras in 3D space from a video stream, while – often simultaneously – constructing a model of the environment. Related techniques have evolved substantially since the 1980s, leading to increasingly accurate estimations. Traditionally, however, the quality of results is strongly affected by the presence of moving objects, incomplete data, or difficult surfaces – i.e. surfaces that are not Lambertian or lack texture. One insight of this work is that these problems can be addressed by going beyond geometrical and optical constraints, in favour of object level and semantic constraints. Incorporating specific types of prior knowledge in the inference process, such as motion or shape priors, leads to approaches with distinct advantages and disadvantages. After introducing relevant concepts in Chapter 1 and Chapter 2, methods for building object-centric maps in dynamic environments using motion priors are investigated in Chapter 5. Chapter 6 addresses the same problem as Chapter 5, but presents an approach which relies on semantic priors rather than motion cues. To fully exploit semantic information, Chapter 7 discusses the conditioning of shape representations on prior knowledge and the practical application to monocular, object-aware reconstruction systems

    Combining Features and Semantics for Low-level Computer Vision

    Get PDF
    Visual perception of depth and motion plays a significant role in understanding and navigating the environment. Reconstructing outdoor scenes in 3D and estimating the motion from video cameras are of utmost importance for applications like autonomous driving. The corresponding problems in computer vision have witnessed tremendous progress over the last decades, yet some aspects still remain challenging today. Striking examples are reflecting and textureless surfaces or large motions which cannot be easily recovered using traditional local methods. Further challenges include occlusions, large distortions and difficult lighting conditions. In this thesis, we propose to overcome these challenges by modeling non-local interactions leveraging semantics and contextual information. Firstly, for binocular stereo estimation, we propose to regularize over larger areas on the image using object-category specific disparity proposals which we sample using inverse graphics techniques based on a sparse disparity estimate and a semantic segmentation of the image. The disparity proposals encode the fact that objects of certain categories are not arbitrarily shaped but typically exhibit regular structures. We integrate them as non-local regularizer for the challenging object class 'car' into a superpixel-based graphical model and demonstrate its benefits especially in reflective regions. Secondly, for 3D reconstruction, we leverage the fact that the larger the reconstructed area, the more likely objects of similar type and shape will occur in the scene. This is particularly true for outdoor scenes where buildings and vehicles often suffer from missing texture or reflections, but share similarity in 3D shape. We take advantage of this shape similarity by localizing objects using detectors and jointly reconstructing them while learning a volumetric model of their shape. This allows to reduce noise while completing missing surfaces as objects of similar shape benefit from all observations for the respective category. Evaluations with respect to LIDAR ground-truth on a novel challenging suburban dataset show the advantages of modeling structural dependencies between objects. Finally, motivated by the success of deep learning techniques in matching problems, we present a method for learning context-aware features for solving optical flow using discrete optimization. Towards this goal, we present an efficient way of training a context network with a large receptive field size on top of a local network using dilated convolutions on patches. We perform feature matching by comparing each pixel in the reference image to every pixel in the target image, utilizing fast GPU matrix multiplication. The matching cost volume from the network's output forms the data term for discrete MAP inference in a pairwise Markov random field. Extensive evaluations reveal the importance of context for feature matching.Die visuelle Wahrnehmung von Tiefe und Bewegung spielt eine wichtige Rolle bei dem VerstĂ€ndnis und der Navigation in unserer Umwelt. Die 3D Rekonstruktion von Szenen im Freien und die SchĂ€tzung der Bewegung von Videokameras sind von grĂ¶ĂŸter Bedeutung fĂŒr Anwendungen, wie das autonome Fahren. Die Erforschung der entsprechenden Probleme des maschinellen Sehens hat in den letzten Jahrzehnten enorme Fortschritte gemacht, jedoch bleiben einige Aspekte heute noch ungelöst. Beispiele hierfĂŒr sind reflektierende und texturlose OberflĂ€chen oder große Bewegungen, bei denen herkömmliche lokale Methoden hĂ€ufig scheitern. Weitere Herausforderungen sind niedrige Bildraten, Verdeckungen, große Verzerrungen und schwierige LichtverhĂ€ltnisse. In dieser Arbeit schlagen wir vor nicht-lokale Interaktionen zu modellieren, die semantische und kontextbezogene Informationen nutzen, um diese Herausforderungen zu meistern. FĂŒr die binokulare Stereo SchĂ€tzung schlagen wir zuallererst vor zusammenhĂ€ngende Bereiche mit objektklassen-spezifischen DisparitĂ€ts VorschlĂ€gen zu regularisieren, die wir mit inversen Grafik Techniken auf der Grundlage einer spĂ€rlichen DisparitĂ€tsschĂ€tzung und semantischen Segmentierung des Bildes erhalten. Die DisparitĂ€ts VorschlĂ€ge kodieren die Tatsache, dass die GegenstĂ€nde bestimmter Kategorien nicht willkĂŒrlich geformt sind, sondern typischerweise regelmĂ€ĂŸige Strukturen aufweisen. Wir integrieren sie fĂŒr die komplexe Objektklasse 'Auto' in Form eines nicht-lokalen Regularisierungsterm in ein Superpixel-basiertes grafisches Modell und zeigen die Vorteile vor allem in reflektierenden Bereichen. Zweitens nutzen wir fĂŒr die 3D-Rekonstruktion die Tatsache, dass mit der GrĂ¶ĂŸe der rekonstruierten FlĂ€che auch die Wahrscheinlichkeit steigt, Objekte von Ă€hnlicher Art und Form in der Szene zu enthalten. Dies gilt besonders fĂŒr Szenen im Freien, in denen GebĂ€ude und Fahrzeuge oft vorkommen, die unter fehlender Textur oder Reflexionen leiden aber Ă€hnlichkeit in der Form aufweisen. Wir nutzen diese Ă€hnlichkeiten zur Lokalisierung von Objekten mit Detektoren und zur gemeinsamen Rekonstruktion indem ein volumetrisches Modell ihrer Form erlernt wird. Dies ermöglicht auftretendes Rauschen zu reduzieren, wĂ€hrend fehlende FlĂ€chen vervollstĂ€ndigt werden, da Objekte Ă€hnlicher Form von allen Beobachtungen der jeweiligen Kategorie profitieren. Die Evaluierung auf einem neuen, herausfordernden vorstĂ€dtischen Datensatz in Anbetracht von LIDAR-Entfernungsdaten zeigt die Vorteile der Modellierung von strukturellen AbhĂ€ngigkeiten zwischen Objekten. Zuletzt, motiviert durch den Erfolg von Deep Learning Techniken bei der Mustererkennung, prĂ€sentieren wir eine Methode zum Erlernen von kontextbezogenen Merkmalen zur Lösung des optischen Flusses mittels diskreter Optimierung. Dazu stellen wir eine effiziente Methode vor um zusĂ€tzlich zu einem Lokalen Netzwerk ein Kontext-Netzwerk zu erlernen, das mit Hilfe von erweiterter Faltung auf Patches ein großes rezeptives Feld besitzt. FĂŒr das Feature Matching vergleichen wir mit schnellen GPU-Matrixmultiplikation jedes Pixel im Referenzbild mit jedem Pixel im Zielbild. Das aus dem Netzwerk resultierende Matching Kostenvolumen bildet den Datenterm fĂŒr eine diskrete MAP Inferenz in einem paarweisen Markov Random Field. Eine umfangreiche Evaluierung zeigt die Relevanz des Kontextes fĂŒr das Feature Matching

    Idƍ saishƍ jijƍ kinjihƍ o mochiita dƍteki shÄ«n no jitsujikan 3jigen saikƍchiku

    Get PDF

    3D Reconstruction of Small Solar System Bodies using Rendered and Compressed Images

    Get PDF
    Synthetic image generation and reconstruction of Small Solar System Bodies and the influence of compression is becoming an important study topic because of the advent of small spacecraft in deep space missions. Most of these missions are fly-by scenarios, for example in the Comet Interceptor mission. Due to limited data budgets of small satellite missions, maximising scientific return requires investigating effects of lossy compression. A preliminary simulation pipeline had been developed that uses physics-based rendering in combination with procedural terrain generation to overcome limitations of currently used methods for image rendering like the Hapke model. The rendered Small Solar System Body images are combined with a star background and photometrically calibrated to represent realistic imagery. Subsequently, a Structure-from-Motion pipeline reconstructs three-dimensional models from the rendered images. In this work, the preliminary simulation pipeline was developed further into the Space Imaging Simulator for Proximity Operations software package and a compression package was added. The compression package was used to investigate effects of lossy compression on reconstructed models and the possible amount of data reduction of lossy compression to lossless compression. Several scenarios with varying fly-by distances ranging from 50 km to 400 km and body sizes of 1 km and 10 km were simulated and compressed with lossless and several quality levels of lossy compression using PNG and JPEG 2000 respectively. It was found that low compression ratios introduce artefacts resembling random noise while high compression ratios remove surface features. The random noise artefacts introduced by low compression ratios frequently increased the number of vertices and faces of the reconstructed three-dimensional model

    Light field reconstruction from multi-view images

    Get PDF
    Kang Han studied recovering the 3D world from multi-view images. He proposed several algorithms to deal with occlusions in depth estimation and effective representations in view rendering. the proposed algorithms can be used for many innovative applications based on machine intelligence, such as autonomous driving and Metaverse
    • 

    corecore