74 research outputs found

    Defocus Video Matting

    Get PDF
    Video matting is the process of pulling a high-quality alpha matte and foreground from a video sequence. Current techniques require either a known background (e.g., a blue screen) or extensive user interaction (e.g., to specify known foreground and background elements). The matting problem is generally under-constrained, since not enough information has been collected at capture time. We propose a novel, fully autonomous method for pulling a matte using multiple synchronized video streams that share a point of view but differ in their plane of focus. The solution is obtained by directly minimizing the error in filter-based image formation equations, which are over-constrained by our rich data stream. Our system solves the fully dynamic video matting problem without user assistance: both the foreground and background may be high frequency and have dynamic content, the foreground may resemble the background, and the scene is lit by natural (as opposed to polarized or collimated) illumination.Engineering and Applied Science

    Synchronized Illumination Modulation for Digital Video Compositing

    Get PDF
    Informationsaustausch ist eines der Grundbedürfnisse der Menschen. Während früher dazu Wandmalereien,Handschrift, Buchdruck und Malerei eingesetzt wurden, begann man später, Bildfolgen zu erstellen, die als sogenanntes ”Daumenkino” den Eindruck einer Animation vermitteln. Diese wurden schnell durch den Einsatz rotierender Bildscheiben, auf denen mit Hilfe von Schlitzblenden, Spiegeln oder Optiken eine Animation sichtbar wurde, automatisiert – mit sogenannten Phenakistiskopen,Zoetropen oder Praxinoskopen. Mit der Erfindung der Fotografie begannen in der zweiten Hälfte des 19. Jahrhunderts die ersten Wissenschaftler wie Eadweard Muybridge, Etienne-Jules Marey und Ottomar Anschütz, Serienbildaufnahmen zu erstellen und diese dann in schneller Abfolge, als Film, abzuspielen. Mit dem Beginn der Filmproduktion wurden auch die ersten Versuche unternommen, mit Hilfe dieser neuen Technik spezielle visuelle Effekte zu generieren, um damit die Immersion der Bewegtbildproduktionen weiter zu erhöhen. Während diese Effekte in der analogen Phase der Filmproduktion bis in die achtziger Jahre des 20.Jahrhunderts recht beschränkt und sehr aufwendig mit einem enormen manuellen Arbeitsaufwand erzeugt werden mussten, gewannen sie mit der sich rapide beschleunigenden Entwicklung der Halbleitertechnologie und der daraus resultierenden vereinfachten digitalen Bearbeitung immer mehr an Bedeutung. Die enormen Möglichkeiten, die mit der verlustlosen Nachbearbeitung in Kombination mit fotorealistischen, dreidimensionalen Renderings entstanden, führten dazu, dass nahezu alle heute produzierten Filme eine Vielfalt an digitalen Videokompositionseffekten beinhalten. ...Besides home entertainment and business presentations, video projectors are powerful tools for modulating images spatially as well as temporally. The re-evolving need for stereoscopic displays increases the demand for low-latency projectors and recent advances in LED technology also offer high modulation frequencies. Combining such high-frequency illumination modules with synchronized, fast cameras, makes it possible to develop specialized high-speed illumination systems for visual effects production. In this thesis we present different systems for using spatially as well as temporally modulated illumination in combination with a synchronized camera to simplify the requirements of standard digital video composition techniques for film and television productions and to offer new possibilities for visual effects generation. After an overview of the basic terminology and a summary of related methods, we discuss and give examples of how modulated light can be applied to a scene recording context to enable a variety of effects which cannot be realized using standard methods, such as virtual studio technology or chroma keying. We propose using high-frequency, synchronized illumination which, in addition to providing illumination, is modulated in terms of intensity and wavelength to encode technical information for visual effects generation. This is carried out in such a way that the technical components do not influence the final composite and are also not visible to observers on the film set. Using this approach we present a real-time flash keying system for the generation of perspectively correct augmented composites by projecting imperceptible markers for optical camera tracking. Furthermore, we present a system which enables the generation of various digital video compositing effects outside of completely controlled studio environments, such as virtual studios. A third temporal keying system is presented that aims to overcome the constraints of traditional chroma keying in terms of color spill and color dependency. ..

    Programmable Image-Based Light Capture for Previsualization

    Get PDF
    Previsualization is a class of techniques for creating approximate previews of a movie sequence in order to visualize a scene prior to shooting it on the set. Often these techniques are used to convey the artistic direction of the story in terms of cinematic elements, such as camera movement, angle, lighting, dialogue, and character motion. Essentially, a movie director uses previsualization (previs) to convey movie visuals as he sees them in his minds-eye . Traditional methods for previs include hand-drawn sketches, Storyboards, scaled models, and photographs, which are created by artists to convey how a scene or character might look or move. A recent trend has been to use 3D graphics applications such as video game engines to perform previs, which is called 3D previs. This type of previs is generally used prior to shooting a scene in order to choreograph camera or character movements. To visualize a scene while being recorded on-set, directors and cinematographers use a technique called On-set previs, which provides a real-time view with little to no processing. Other types of previs, such as Technical previs, emphasize accurately capturing scene properties but lack any interactive manipulation and are usually employed by visual effects crews and not for cinematographers or directors. This dissertation\u27s focus is on creating a new method for interactive visualization that will automatically capture the on-set lighting and provide interactive manipulation of cinematic elements to facilitate the movie maker\u27s artistic expression, validate cinematic choices, and provide guidance to production crews. Our method will overcome the drawbacks of the all previous previs methods by combining photorealistic rendering with accurately captured scene details, which is interactively displayed on a mobile capture and rendering platform. This dissertation describes a new hardware and software previs framework that enables interactive visualization of on-set post-production elements. A three-tiered framework, which is the main contribution of this dissertation is; 1) a novel programmable camera architecture that provides programmability to low-level features and a visual programming interface, 2) new algorithms that analyzes and decomposes the scene photometrically, and 3) a previs interface that leverages the previous to perform interactive rendering and manipulation of the photometric and computer generated elements. For this dissertation we implemented a programmable camera with a novel visual programming interface. We developed the photometric theory and implementation of our novel relighting technique called Symmetric lighting, which can be used to relight a scene with multiple illuminants with respect to color, intensity and location on our programmable camera. We analyzed the performance of Symmetric lighting on synthetic and real scenes to evaluate the benefits and limitations with respect to the reflectance composition of the scene and the number and color of lights within the scene. We found that, since our method is based on a Lambertian reflectance assumption, our method works well under this assumption but that scenes with high amounts of specular reflections can have higher errors in terms of relighting accuracy and additional steps are required to mitigate this limitation. Also, scenes which contain lights whose colors are a too similar can lead to degenerate cases in terms of relighting. Despite these limitations, an important contribution of our work is that Symmetric lighting can also be leveraged as a solution for performing multi-illuminant white balancing and light color estimation within a scene with multiple illuminants without limits on the color range or number of lights. We compared our method to other white balance methods and show that our method is superior when at least one of the light colors is known a priori

    Towards Real-time Mixed Reality Matting In Natural Scenes

    Get PDF
    In Mixed Reality scenarios, background replacement is a common way to immerse a user in a synthetic environment. Properly identifying the background pixels in an image or video is a dif- ficult problem known as matting. Proper alpha mattes usually come from human guidance, special hardware setups, or color dependent algorithms. This is a consequence of the under-constrained nature of the per pixel alpha blending equation. In constant color matting, research identifies and replaces a background that is a single color, known as the chroma key color. Unfortunately, the algorithms force a controlled physical environment and favor constant, uniform lighting. More generic approaches, such as natural image matting, have made progress finding alpha matte solutions in environments with naturally occurring backgrounds. However, even for the quicker algorithms, the generation of trimaps, indicating regions of known foreground and background pixels, normally requires human interaction or offline computation. This research addresses ways to automatically solve an alpha matte for an image in realtime, and by extension a video, using a consumer level GPU. It does so even in the context of noisy environments that result in less reliable constraints than found in controlled settings. To attack these challenges, we are particularly interested in automatically generating trimaps from depth buffers for dynamic scenes so that algorithms requiring more dense constraints may be used. The resulting computation is parallelizable so that it may run on a GPU and should work for natural images as well as chroma key backgrounds. Extra input may be required, but when this occurs, commodity hardware available in most Mixed Reality setups should be able to provide the input. This allows us to provide real-time alpha mattes for Mixed Reality scenarios that take place in relatively controlled environments. As a consequence, while monochromatic backdrops (such as green screens or retro-reflective material) aid the algorithm’s accuracy, they are not an explicit requirement. iii Finally we explore a sub-image based approach to parallelize an existing hierarchical approach on high resolution imagery. We show that locality can be exploited to significantly reduce the memory and compute requirements of previously necessary when computing alpha mattes of high resolution images. We achieve this using a parallelizable scheme that is both independent of the matting algorithm and image features. Combined, these research topics provide a basis for Mixed Reality scenarios using real-time natural image matting on high definition video sources

    Real-time Global Illumination Decomposition of Videos

    Get PDF
    We propose the first approach for the decomposition of a monocular color video into direct and indirect illumination components in real time. We retrieve, in separate layers, the contribution made to the scene appearance by the scene reflectance, the light sources and the reflections from various coherent scene regions to one another. Existing techniques that invert global light transport require image capture under multiplexed controlled lighting, or only enable the decomposition of a single image at slow off-line frame rates. In contrast, our approach works for regular videos and produces temporally coherent decomposition layers at real-time frame rates. At the core of our approach are several sparsity priors that enable the estimation of the per-pixel direct and indirect illumination layers based on a small set of jointly estimated base reflectance colors. The resulting variational decomposition problem uses a new formulation based on sparse and dense sets of non-linear equations that we solve efficiently using a novel alternating data-parallel optimization strategy. We evaluate our approach qualitatively and quantitatively, and show improvements over the state of the art in this field, in both quality and runtime. In addition, we demonstrate various real-time appearance editing applications for videos with consistent illumination

    Coded Projection and Illumination for Television Studios

    Get PDF
    We propose the application of temporally and spatially coded projection and illumination in modern television studios. In our vision, this supports ad-hoc re-illumination, automatic keying, unconstrained presentation of moderation information, camera-tracking, and scene acquisition. In this paper we show how a new adaptive imperceptible pattern projection that considers parameters of human visual perception, linked with real-time difference keying enables an in-shot optical tracking using a novel dynamic multi-resolution marker techniqu

    Automated inverse-rendering techniques for realistic 3D artefact compositing in 2D photographs

    Get PDF
    PhD ThesisThe process of acquiring images of a scene and modifying the defining structural features of the scene through the insertion of artefacts is known in literature as compositing. The process can take effect in the 2D domain (where the artefact originates from a 2D image and is inserted into a 2D image), or in the 3D domain (the artefact is defined as a dense 3D triangulated mesh, with textures describing its material properties). Compositing originated as a solution to enhancing, repairing, and more broadly editing photographs and video data alike in the film industry as part of the post-production stage. This is generally thought of as carrying out operations in a 2D domain (a single image with a known width, height, and colour data). The operations involved are sequential and entail separating the foreground from the background (matting), or identifying features from contour (feature matching and segmentation) with the purpose of introducing new data in the original. Since then, compositing techniques have gained more traction in the emerging fields of Mixed Reality (MR), Augmented Reality (AR), robotics and machine vision (scene understanding, scene reconstruction, autonomous navigation). When focusing on the 3D domain, compositing can be translated into a pipeline 1 - the incipient stage acquires the scene data, which then undergoes a number of processing steps aimed at inferring structural properties that ultimately allow for the placement of 3D artefacts anywhere within the scene, rendering a plausible and consistent result with regard to the physical properties of the initial input. This generic approach becomes challenging in the absence of user annotation and labelling of scene geometry, light sources and their respective magnitude and orientation, as well as a clear object segmentation and knowledge of surface properties. A single image, a stereo pair, or even a short image stream may not hold enough information regarding the shape or illumination of the scene, however, increasing the input data will only incur an extensive time penalty which is an established challenge in the field. Recent state-of-the-art methods address the difficulty of inference in the absence of 1In the present document, the term pipeline refers to a software solution formed of stand-alone modules or stages. It implies that the flow of execution runs in a single direction, and that each module has the potential to be used on its own as part of other solutions. Moreover, each module is assumed to take an input set and output data for the following stage, where each module addresses a single type of problem only. data, nonetheless, they do not attempt to solve the challenge of compositing artefacts between existing scene geometry, or cater for the inclusion of new geometry behind complex surface materials such as translucent glass or in front of reflective surfaces. The present work focuses on the compositing in the 3D domain and brings forth a software framework 2 that contributes solutions to a number of challenges encountered in the field, including the ability to render physically-accurate soft shadows in the absence of user annotate scene properties or RGB-D data. Another contribution consists in the timely manner in which the framework achieves a believable result compared to the other compositing methods which rely on offline rendering. The availability of proprietary hardware and user expertise are two of the main factors that are not required in order to achieve a fast and reliable results within the current framework

    Efficient data structures for piecewise-smooth video processing

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 95-102).A number of useful image and video processing techniques, ranging from low level operations such as denoising and detail enhancement to higher level methods such as object manipulation and special effects, rely on piecewise-smooth functions computed from the input data. In this thesis, we present two computationally efficient data structures for representing piecewise-smooth visual information and demonstrate how they can dramatically simplify and accelerate a variety of video processing algorithms. We start by introducing the bilateral grid, an image representation that explicitly accounts for intensity edges. By interpreting brightness values as Euclidean coordinates, the bilateral grid enables simple expressions for edge-aware filters. Smooth functions defined on the bilateral grid are piecewise-smooth in image space. Within this framework, we derive efficient reinterpretations of a number of edge-aware filters commonly used in computational photography as operations on the bilateral grid, including the bilateral filter, edgeaware scattered data interpolation, and local histogram equalization. We also show how these techniques can be easily parallelized onto modern graphics hardware for real-time processing of high definition video. The second data structure we introduce is the video mesh, designed as a flexible central data structure for general-purpose video editing. It represents objects in a video sequence as 2.5D "paper cutouts" and allows interactive editing of moving objects and modeling of depth, which enables 3D effects and post-exposure camera control. In our representation, we assume that motion and depth are piecewise-smooth, and encode them sparsely as a set of points tracked over time. The video mesh is a triangulation over this point set and per-pixel information is obtained by interpolation. To handle occlusions and detailed object boundaries, we rely on the user to rotoscope the scene at a sparse set of frames using spline curves. We introduce an algorithm to robustly and automatically cut the mesh into local layers with proper occlusion topology, and propagate the splines to the remaining frames. Object boundaries are refined with per-pixel alpha mattes. At its core, the video mesh is a collection of texture-mapped triangles, which we can edit and render interactively using graphics hardware. We demonstrate the effectiveness of our representation with special effects such as 3D viewpoint changes, object insertion, depthof- field manipulation, and 2D to 3D video conversion.by Jiawen Chen.Ph.D
    • …
    corecore