31 research outputs found

    High-performance geometric vascular modelling

    Get PDF
    Image-based high-performance geometric vascular modelling and reconstruction is an essential component of computer-assisted surgery on the diagnosis, analysis and treatment of cardiovascular diseases. However, it is an extremely challenging task to efficiently reconstruct the accurate geometric structures of blood vessels out of medical images. For one thing, the shape of an individual section of a blood vessel is highly irregular because of the squeeze of other tissues and the deformation caused by vascular diseases. For another, a vascular system is a very complicated network of blood vessels with different types of branching structures. Although some existing vascular modelling techniques can reconstruct the geometric structure of a vascular system, they are either time-consuming or lacking sufficient accuracy. What is more, these techniques rarely consider the interior tissue of the vascular wall, which consists of complicated layered structures. As a result, it is necessary to develop a better vascular geometric modelling technique, which is not only of high performance and high accuracy in the reconstruction of vascular surfaces, but can also be used to model the interior tissue structures of the vascular walls.This research aims to develop a state-of-the-art patient-specific medical image-based geometric vascular modelling technique to solve the above problems. The main contributions of this research are:- Developed and proposed the Skeleton Marching technique to reconstruct the geometric structures of blood vessels with high performance and high accuracy. With the proposed technique, the highly complicated vascular reconstruction task is reduced to a set of simple localised geometric reconstruction tasks, which can be carried out in a parallel manner. These locally reconstructed vascular geometric segments are then combined together using shape-preserving blending operations to faithfully represent the geometric shape of the whole vascular system.- Developed and proposed the Thin Implicit Patch method to realistically model the interior geometric structures of the vascular tissues. This method allows the multi-layer interior tissue structures to be embedded inside the vascular wall to illustrate the geometric details of the blood vessel in real world

    Highly Parallel Geometric Characterization and Visualization of Volumetric Data Sets

    Get PDF
    Volumetric 3D data sets are being generated in many different application areas. Some examples are CAT scans and MRI data, 3D models of protein molecules represented by implicit surfaces, multi-dimensional numeric simulations of plasma turbulence, and stacks of confocal microscopy images of cells. The size of these data sets has been increasing, requiring the speed of analysis and visualization techniques to also increase to keep up. Recent advances in processor technology have stopped increasing clock speed and instead begun increasing parallelism, resulting in multi-core CPUS and many-core GPUs. To take advantage of these new parallel architectures, algorithms must be explicitly written to exploit parallelism. In this thesis we describe several algorithms and techniques for volumetric data set analysis and visualization that are amenable to these modern parallel architectures. We first discuss modeling volumetric data with Gaussian Radial Basis Functions (RBFs). RBF representation of a data set has several advantages, including lossy compression, analytic differentiability, and analytic application of Gaussian blur. We also describe a parallel volume rendering algorithm that can create images of the data directly from the RBF representation. Next we discuss a parallel, stochastic algorithm for measuring the surface area of volumetric representations of molecules. The algorithm is suitable for implementation on a GPU and is also progressive, allowing it to return a rough answer almost immediately and refine the answer over time to the desired level of accuracy. After this we discuss the concept of Confluent Visualization, which allows the visualization of the interaction between a pair of volumetric data sets. The interaction is visualized through volume rendering, which is well suited to implementation on parallel architectures. Finally we discuss a parallel, stochastic algorithm for classifying stem cells as having been grown on a surface that induces differentiation or on a surface that does not induce differentiation. The algorithm takes as input 3D volumetric models of the cells generated from confocal microscopy. This algorithm builds on our algorithm for surface area measurement and, like that algorithm, this algorithm is also suitable for implementation on a GPU and is progressive

    Adequate Inner Bound for Geometric Modeling with Compact Field Function

    Get PDF
    International audienceRecent advances in implicit surface modeling now provide highly controllable blending effects. These effects rely on the field functions of R3→R\mathbb{R}^3 \rightarrow \mathbb{R} in which the implicit surfaces are defined. In these fields, there is an outside part in which blending is defined and an inside part. The implicit surface is the interface between these two parts. As recent operators often focus on blending, most efforts have been made on the outer part of field functions and little attention has been paid on the inner part. Yet, the inner fields are important as soon as difference and intersection operators are used. This makes its quality as crucial as the quality of the outside. In this paper, we analyze these shortcomings, and deduce new constraints on field functions such that differences and intersections can be seamlessly applied without introducing discontinuities or field distortions. In particular, we show how to adapt state of the art gradient-based union and blending operators to our new constraints. Our approach enables a precise control of the shape of both the inner or outer field boundaries. We also introduce a new set of asymmetric operators tailored for the modeling of fine details while preserving the integrity of the resulting fields

    Accurate geometry reconstruction of vascular structures using implicit splines

    Get PDF
    3-D visualization of blood vessel from standard medical datasets (e.g. CT or MRI) play an important role in many clinical situations, including the diagnosis of vessel stenosis, virtual angioscopy, vascular surgery planning and computer aided vascular surgery. However, unlike other human organs, the vasculature system is a very complex network of vessel, which makes it a very challenging task to perform its 3-D visualization. Conventional techniques of medical volume data visualization are in general not well-suited for the above-mentioned tasks. This problem can be solved by reconstructing vascular geometry. Although various methods have been proposed for reconstructing vascular structures, most of these approaches are model-based, and are usually too ideal to correctly represent the actual variation presented by the cross-sections of a vascular structure. In addition, the underlying shape is usually expressed as polygonal meshes or in parametric forms, which is very inconvenient for implementing ramification of branching. As a result, the reconstructed geometries are not suitable for computer aided diagnosis and computer guided minimally invasive vascular surgery. In this research, we develop a set of techniques associated with the geometry reconstruction of vasculatures, including segmentation, modelling, reconstruction, exploration and rendering of vascular structures. The reconstructed geometry can not only help to greatly enhance the visual quality of 3-D vascular structures, but also provide an actual geometric representation of vasculatures, which can provide various benefits. The key findings of this research are as follows: 1. A localized hybrid level-set method of segmentation has been developed to extract the vascular structures from 3-D medical datasets. 2. A skeleton-based implicit modelling technique has been proposed and applied to the reconstruction of vasculatures, which can achieve an accurate geometric reconstruction of the vascular structures as implicit surfaces in an analytical form. 3. An accelerating technique using modern GPU (Graphics Processing Unit) is devised and applied to rendering the implicitly represented vasculatures. 4. The implicitly modelled vasculature is investigated for the application of virtual angioscopy

    Improving Filtering for Computer Graphics

    Get PDF
    When drawing images onto a computer screen, the information in the scene is typically more detailed than can be displayed. Most objects, however, will not be close to the camera, so details have to be filtered out, or anti-aliased, when the objects are drawn on the screen. I describe new methods for filtering images and shapes with high fidelity while using computational resources as efficiently as possible. Vector graphics are everywhere, from drawing 3D polygons to 2D text and maps for navigation software. Because of its numerous applications, having a fast, high-quality rasterizer is important. I developed a method for analytically rasterizing shapes using wavelets. This approach allows me to produce accurate 2D rasterizations of images and 3D voxelizations of objects, which is the first step in 3D printing. I later improved my method to handle more filters. The resulting algorithm creates higher-quality images than commercial software such as Adobe Acrobat and is several times faster than the most highly optimized commercial products. The quality of texture filtering also has a dramatic impact on the quality of a rendered image. Textures are images that are applied to 3D surfaces, which typically cannot be mapped to the 2D space of an image without introducing distortions. For situations in which it is impossible to change the rendering pipeline, I developed a method for precomputing image filters over 3D surfaces. If I can also change the pipeline, I show that it is possible to improve the quality of texture sampling significantly in real-time rendering while using the same memory bandwidth as used in traditional methods

    Convolution filtering of continuous signed distance fields for polygonal meshes

    Get PDF
    Signed distance fields obtained from polygonal meshes are commonly used in various applications. However, they can have C1 discontinuities causing creases to appear when applying operations such as blending or metamorphosis. The focus of this work is to efficiently evaluate the signed distance function and to apply a smoothing filter to it while preserving the shape of the initial mesh. The resulting function is smooth almost everywhere, while preserving the exact shape of the polygonal mesh. Due to its low complexity, the proposed filtering technique remains fast compared to its main alternatives providing C1-continuous distance field approximation. Several applications are presented such as blending, metamorphosis and heterogeneous modelling with polygonal meshes

    Markov Random Field Surface Reconstruction

    Get PDF

    Methods for 3D Geometry Processing in the Cultural Heritage Domain

    Get PDF
    This thesis presents methods for 3D geometry processing under the aspects of cultural heritage applications. After a short overview over the relevant basics in 3D geometry processing, the present thesis investigates the digital acquisition of 3D models. A particular challenge in this context are on the one hand difficult surface or material properties of the model to be captured. On the other hand, the fully automatic reconstruction of models even with suitable surface properties that can be captured with Laser range scanners is not yet completely solved. This thesis presents two approaches to tackle these challenges. One exploits a thorough capture of the object’s appearance and a coarse reconstruction for a concise and realistic object representation even for objects with problematic surface properties like reflectivity and transparency. The other method concentrates on digitisation via Laser-range scanners and exploits 2D colour images that are typically recorded with the range images for a fully automatic registration technique. After reconstruction, the captured models are often still incomplete, exhibit holes and/or regions of insufficient sampling. In addition to that, holes are often deliberately introduced into a registered model to remove some undesired or defective surface part. In order to produce a visually appealing model, for instance for visualisation purposes, for prototype or replica production, these holes have to be detected and filled. Although completion is a well-established research field in 2D image processing and many approaches do exist for image completion, surface completion in 3D is a fairly new field of research. This thesis presents a hierarchical completion approach that employs and extends successful exemplar-based 2D image processing approaches to 3D and fills in detail-equipped surface patches into missing surface regions. In order to identify and construct suitable surface patches, selfsimilarity and coherence properties of the surface context of the hole are exploited. In addition to the reconstruction and repair, the present thesis also investigates methods for a modification of captured models via interactive modelling. In this context, modelling is regarded as a creative process, for instance for animation purposes. On the other hand, it is also demonstrated how this creative process can be used to introduce human expertise into the otherwise automatic completion process. This way, reconstructions are feasible even of objects where already the data source, the object itself, is incomplete due to corrosion, demolition, or decay.Methoden zur 3D-Geometrieverarbeitung im Kulturerbesektor In dieser Arbeit werden Methoden zur Bearbeitung von digitaler 3D-Geometrie unter besonderer Berücksichtigung des Anwendungsbereichs im Kulturerbesektor vorgestellt. Nach einem kurzen Überblick über die relevanten Grundlagen der dreidimensionalen Geometriebehandlung wird zunächst die digitale Akquise von dreidimensionalen Objekten untersucht. Eine besondere Herausforderung stellen bei der Erfassung einerseits ungünstige Oberflächen- oder Materialeigenschaften der Objekte dar (wie z.B. Reflexivität oder Transparenz), andererseits ist auch die vollautomatische Rekonstruktion von solchen Modellen, die sich verhältnismäßig problemlos mit Laser-Range Scannern erfassen lassen, immer noch nicht vollständig gelöst. Daher bilden zwei neuartige Verfahren, die diesen Herausforderungen begegnen, den Anfang. Auch nach der Registrierung sind die erfassten Datensätze in vielen Fällen unvollständig, weisen Löcher oder nicht ausreichend abgetastete Regionen auf. Darüber hinaus werden in vielen Anwendungen auch, z.B. durch Entfernen unerwünschter Oberflächenregionen, Löcher gewollt hinzugefügt. Für eine optisch ansprechende Rekonstruktion, vor allem zu Visualisierungszwecken, im Bildungs- oder Unterhaltungssektor oder zur Prototyp- und Replik-Erzeugung müssen diese Löcher zunächst automatisch detektiert und anschließend geschlossen werden. Obwohl dies im zweidimensionalen Fall der Bildbearbeitung bereits ein gut untersuchtes Forschungsfeld darstellt und vielfältige Ansätze zur automatischen Bildvervollständigung existieren, ist die Lage im dreidimensionalen Fall anders, und die Übertragung von zweidimensionalen Ansätzen in den 3D stellt vielfach eine große Herausforderung dar, die bislang keine zufriedenstellenden Lösungen erlaubt hat. Nichtsdestoweniger wird in dieser Arbeit ein hierarchisches Verfahren vorgestellt, das beispielbasierte Konzepte aus dem 2D aufgreift und Löcher in Oberflächen im 3D unter Ausnutzung von Selbstähnlichkeiten und Kohärenzeigenschaften des Oberflächenkontextes schließt. Um plausible Oberflächen zu erzeugen werden die Löcher dabei nicht nur glatt gefüllt, sondern auch feinere Details aus dem Kontext rekonstruiert. Abschließend untersucht die vorliegende Arbeit noch die Modifikation der vervollständigten Objekte durch Freiformmodellierung. Dies wird dabei zum einen als kreativer Prozess z.B. zu Animationszwecken betrachtet. Zum anderen wird aber auch untersucht, wie dieser kreative Prozess benutzt werden kann, um etwaig vorhandenes Expertenwissen in die ansonsten automatische Vervollständigung mit einfließen zu lassen. Auf diese Weise werden auch Rekonstruktionen ermöglicht von Objekten, bei denen schon die Datenquelle, also das Objekt selbst z.B. durch Korrosion oder mutwillige Zerstörung unvollständig ist

    Towards additive manufacturing oriented geometric modeling using implicit functions

    Get PDF
    Surface-based geometric modeling has many advantages in terms of visualization and traditional subtractive manufacturing using computer-numerical-control cutting-machine tools. However, it is not an ideal solution for additive manufacturing because to digitally print a surface-represented geometric object using a certain additive manufacturing technology, the object has to be converted into a solid representation. However, converting a known surface-based geometric representation into a printable representation is essentially a redesign process, and this is especially the case, when its interior material structure needs to be considered. To specify a 3D geometric object that is ready to be digitally manufactured, its representation has to be in a certain volumetric form. In this research, we show how some of the difficulties experienced in additive manufacturing can be easily solved by using implicitly represented geometric objects. Like surface-based geometric representation is subtractive manufacturing-friendly, implicitly described geometric objects are additive manufacturing-friendly: implicit shapes are 3D printing ready. The implicit geometric representation allows to combine a geometric shape, material colors, an interior material structure, and other required attributes in one single description as a set of implicit functions, and no conversion is needed. In addition, as implicit objects are typically specified procedurally, very little data is used in their specifications, which makes them particularly useful for design and visualization with modern cloud-based mobile devices, which usually do not have very big storage spaces. Finally, implicit modeling is a design procedure that is parallel computing-friendly, as the design of a complex geometric object can be divided into a set of simple shape-designing tasks, owing to the availability of shape-preserving implicit blending operations
    corecore