368 research outputs found

    Simulated Annealing

    Get PDF
    The book contains 15 chapters presenting recent contributions of top researchers working with Simulated Annealing (SA). Although it represents a small sample of the research activity on SA, the book will certainly serve as a valuable tool for researchers interested in getting involved in this multidisciplinary field. In fact, one of the salient features is that the book is highly multidisciplinary in terms of application areas since it assembles experts from the fields of Biology, Telecommunications, Geology, Electronics and Medicine

    Deep Reinforcement Learning for Distribution Network Operation and Electricity Market

    Full text link
    The conventional distribution network and electricity market operation have become challenging under complicated network operating conditions, due to emerging distributed electricity generations, coupled energy networks, and new market behaviours. These challenges include increasing dynamics and stochastics, and vast problem dimensions such as control points, measurements, and multiple objectives, etc. Previously the optimization models were often formulated as conventional programming problems and then solved mathematically, which could now become highly time-consuming or sometimes infeasible. On the other hand, with the recent advancement of artificial intelligence technologies, deep reinforcement learning (DRL) algorithms have demonstrated their excellent performances in various control and optimization fields. This indicates a potential alternative to address these challenges. In this thesis, DRL-based solutions for distribution network operation and electricity market have been investigated and proposed. Firstly, a DRL-based methodology is proposed for Volt/Var Control (VVC) optimization in a large distribution network, to effectively control bus voltages and reduce network power losses. Further, this thesis proposes a multi-agent (MA)DRL-based methodology under a complex regional coordinated VVC framework, and it can address spatial and temporal uncertainties. The DRL algorithm is also improved to adapt to the applications. Then, an integrated energy and heating systems (IEHS) optimization problem is solved by a MADRL-based methodology, where conventionally this could only be solved by simplifications or iterations. Beyond the applications in distribution network operation, a new electricity market service pricing method based on a DRL algorithm is also proposed. This DRL-based method has demonstrated good performance in this virtual storage rental service pricing problem, whereas this bi-level problem could hardly be solved directly due to a non-convex and non-continuous lower-level problem. These proposed methods have demonstrated advantageous performances under comprehensive case studies, and numerical simulation results have validated the effectiveness and high efficiency under different sophisticated operation conditions, solution robustness against temporal and spatial uncertainties, and optimality under large problem dimensions

    Recent Advances in Embedded Computing, Intelligence and Applications

    Get PDF
    The latest proliferation of Internet of Things deployments and edge computing combined with artificial intelligence has led to new exciting application scenarios, where embedded digital devices are essential enablers. Moreover, new powerful and efficient devices are appearing to cope with workloads formerly reserved for the cloud, such as deep learning. These devices allow processing close to where data are generated, avoiding bottlenecks due to communication limitations. The efficient integration of hardware, software and artificial intelligence capabilities deployed in real sensing contexts empowers the edge intelligence paradigm, which will ultimately contribute to the fostering of the offloading processing functionalities to the edge. In this Special Issue, researchers have contributed nine peer-reviewed papers covering a wide range of topics in the area of edge intelligence. Among them are hardware-accelerated implementations of deep neural networks, IoT platforms for extreme edge computing, neuro-evolvable and neuromorphic machine learning, and embedded recommender systems

    Federated Reinforcement Learning for Electric Vehicles Charging Control on Distribution Networks

    Full text link
    With the growing popularity of electric vehicles (EVs), maintaining power grid stability has become a significant challenge. To address this issue, EV charging control strategies have been developed to manage the switch between vehicle-to-grid (V2G) and grid-to-vehicle (G2V) modes for EVs. In this context, multi-agent deep reinforcement learning (MADRL) has proven its effectiveness in EV charging control. However, existing MADRL-based approaches fail to consider the natural power flow of EV charging/discharging in the distribution network and ignore driver privacy. To deal with these problems, this paper proposes a novel approach that combines multi-EV charging/discharging with a radial distribution network (RDN) operating under optimal power flow (OPF) to distribute power flow in real time. A mathematical model is developed to describe the RDN load. The EV charging control problem is formulated as a Markov Decision Process (MDP) to find an optimal charging control strategy that balances V2G profits, RDN load, and driver anxiety. To effectively learn the optimal EV charging control strategy, a federated deep reinforcement learning algorithm named FedSAC is further proposed. Comprehensive simulation results demonstrate the effectiveness and superiority of our proposed algorithm in terms of the diversity of the charging control strategy, the power fluctuations on RDN, the convergence efficiency, and the generalization ability

    Distribution energy storage investment prioritization with a real coded multi-objective genetic algorithm

    Get PDF
    Energy Storage Systems (ESSs) are progressively becoming an essential requisite for the upcoming Smart Distribution Systems thanks to the flexibility they introduce in the network operation. A rapid improvement in ESS technology efficiency has been seen, but not yet sufficient to drastically reduce the high investments associated. Thus, optimal planning and management of these devices are crucial to identify specific configurations that can justify ESSs installation. This consideration has motivated a strong interest of the researchers in this field that, however, have separately solved the optimal ESS location and the optimal ESS schedule. In the paper, a novel multi-objective approach is presented, based on the Non-dominated Sorted Genetic Algorithm - II integrated with a real codification that allows joining in a single optimization all the main features of an optimal ESS implementation project: siting, sizing and scheduling. The methodology has been tested on a real-size rural distribution network

    Conic optimization of electric power systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 103-115).The electric power grid is recognized as an essential modern infrastructure that poses numerous canonical design and operational problems. Perhaps most critically, the inherently large scale of the power grid and similar systems necessitates fast algorithms. A particular complication distinguishing problems in power systems from those arising in other large infrastructures is the mathematical description of alternating current power flow: it is nonconvex, and thus excludes power systems from many frameworks benefiting from theoretically and practically efficient algorithms. However, advances over the past twenty years in optimization have led to broader classes possessing such algorithms, as well as procedures for transferring nonconvex problem to these classes. In this thesis, we approximate difficult problems in power systems with tractable, conic programs. First, we formulate a new type of NP-hard graph cut arising from undirected multicommodity flow networks. An eigenvalue bound in the form of the Cheeger inequality is proven, which serves as a starting point for deriving semidefinite relaxations. We next apply a lift-and-project type relaxation to transmission system planning. The approach unifies and improves upon existing models based on the DC power flow approximation, and yields new mixed-integer linear, second-order cone, and semidefinite models for the AC case. The AC models are particularly applicable to scenarios in which the DC approximation is not justified, such as the all-electric ship. Lastly, we consider distribution system reconfiguration. By making physically motivated simplifications to the DistFlow equations, we obtain mixed-integer quadratic, quadratically constrained, and second-order cone formulations, which are accurate and efficient enough for near-optimal, real-time application. We test each model on standard benchmark problems, as well as a new benchmark abstracted from a notional shipboard power system. The models accurately approximate the original formulations, while demonstrating the scalability required for application to realistic systems. Collectively, the models provide tangible new tradeoffs between computational efficiency and accuracy for fundamental problems in power systems.by Joshua Adam Taylor.Ph.D

    Power System Simulation, Control and Optimization

    Get PDF
    This Special Issue “Power System Simulation, Control and Optimization” offers valuable insights into the most recent research developments in these topics. The analysis, operation, and control of power systems are increasingly complex tasks that require advanced simulation models to analyze and control the effects of transformations concerning electricity grids today: Massive integration of renewable energies, progressive implementation of electric vehicles, development of intelligent networks, and progressive evolution of the applications of artificial intelligence

    Optimal Location and Sizing of Distributed Generators in DC Networks Using a Hybrid Method Based on Parallel PBIL and PSO

    Get PDF
    This paper addresses the problem of the locating and sizing of distributed generators (DGs) in direct current (DC) grids and proposes a hybrid methodology based on a parallel version of the Population-Based Incremental Learning (PPBIL) algorithm and the Particle Swarm Optimization (PSO) method. The objective function of the method is based on the reduction of the power loss by using a master-slave structure and the consideration of the set of restrictions associated with DC grids in a distributed generation environment. In such a structure, the master stage (PPBIL) finds the location of the generators and the slave stage (PSO) finds the corresponding sizes. For the purpose of comparison, eight additional hybrid methods were formed by using two additional location methods and two additional sizing methods, and this helped in the evaluation of the effectiveness of the proposed solution. Such an evaluation is illustrated with the electrical test systems composed of 10, 21 and 69 buses and simulated on the software, MATLAB. Finally, the results of the simulation demonstrated that the PPBIL–PSO method obtains the best balance between the reduction of power loss and the processing time

    Methods for Voltage Monitoring, Analysis and Improvement in Active Distribution Networks

    Get PDF
    Power Distribution Networks (DNs) deliver electricity from the transmission systems to the consumers. The proliferation of diverse load components and distributed generators in active DNs is drastically changing the power demand and supply patterns in the DN, which in turn has led to significant stress and uncertainty on the voltage profiles of the DNs. Nevertheless, the communication and computation capabilities of the modern DNs have enabled cyber-enabled power components such as DG (Distributed Generator)}devices to make intelligent decisions through information exchanges. As such, in this dissertation we leverage on this novel capability to present algorithms for voltage monitoring, analysis and improvement that allow the system operator to assess the voltage profile of the DN and to take preventative actions for enhancing voltage profiles and preventing undervoltage/overvoltage incidents. In the subsequent chapters, we present performance guarantees and simulation studies on the proposed algorithms, and compare the algorithms introduced in this dissertation with the state-of-the-art
    • …
    corecore