515 research outputs found

    Character-Level Incremental Speech Recognition with Recurrent Neural Networks

    Full text link
    In real-time speech recognition applications, the latency is an important issue. We have developed a character-level incremental speech recognition (ISR) system that responds quickly even during the speech, where the hypotheses are gradually improved while the speaking proceeds. The algorithm employs a speech-to-character unidirectional recurrent neural network (RNN), which is end-to-end trained with connectionist temporal classification (CTC), and an RNN-based character-level language model (LM). The output values of the CTC-trained RNN are character-level probabilities, which are processed by beam search decoding. The RNN LM augments the decoding by providing long-term dependency information. We propose tree-based online beam search with additional depth-pruning, which enables the system to process infinitely long input speech with low latency. This system not only responds quickly on speech but also can dictate out-of-vocabulary (OOV) words according to pronunciation. The proposed model achieves the word error rate (WER) of 8.90% on the Wall Street Journal (WSJ) Nov'92 20K evaluation set when trained on the WSJ SI-284 training set.Comment: To appear in ICASSP 201

    TheanoLM - An Extensible Toolkit for Neural Network Language Modeling

    Full text link
    We present a new tool for training neural network language models (NNLMs), scoring sentences, and generating text. The tool has been written using Python library Theano, which allows researcher to easily extend it and tune any aspect of the training process. Regardless of the flexibility, Theano is able to generate extremely fast native code that can utilize a GPU or multiple CPU cores in order to parallelize the heavy numerical computations. The tool has been evaluated in difficult Finnish and English conversational speech recognition tasks, and significant improvement was obtained over our best back-off n-gram models. The results that we obtained in the Finnish task were compared to those from existing RNNLM and RWTHLM toolkits, and found to be as good or better, while training times were an order of magnitude shorter

    Self-Attention Networks for Connectionist Temporal Classification in Speech Recognition

    Full text link
    The success of self-attention in NLP has led to recent applications in end-to-end encoder-decoder architectures for speech recognition. Separately, connectionist temporal classification (CTC) has matured as an alignment-free, non-autoregressive approach to sequence transduction, either by itself or in various multitask and decoding frameworks. We propose SAN-CTC, a deep, fully self-attentional network for CTC, and show it is tractable and competitive for end-to-end speech recognition. SAN-CTC trains quickly and outperforms existing CTC models and most encoder-decoder models, with character error rates (CERs) of 4.7% in 1 day on WSJ eval92 and 2.8% in 1 week on LibriSpeech test-clean, with a fixed architecture and one GPU. Similar improvements hold for WERs after LM decoding. We motivate the architecture for speech, evaluate position and downsampling approaches, and explore how label alphabets (character, phoneme, subword) affect attention heads and performance.Comment: Accepted to ICASSP 201

    Performance analysis and optimization of automatic speech recognition

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Fast and accurate Automatic Speech Recognition (ASR) is emerging as a key application for mobile devices. Delivering ASR on such devices is challenging due to the compute-intensive nature of the problem and the power constraints of embedded systems. In this paper, we provide a performance and energy characterization of Pocketsphinx, a popular toolset for ASR that targets mobile devices. We identify the computation of the Gaussian Mixture Model (GMM) as the main bottleneck, consuming more than 80 percent of the execution time. The CPI stack analysis shows that branches and main memory accesses are the main performance limiting factors for GMM computation. We propose several software-level optimizations driven by the power/performance analysis. Unlike previous proposals that trade accuracy for performance by reducing the number of Gaussians evaluated, we maintain accuracy and improve performance by effectively using the underlying CPU microarchitecture. First, we use a refactored implementation of the innermost loop of the GMM evaluation code to ameliorate the impact of branches. Second, we exploit the vector unit available on most modern CPUs to boost GMM computation, introducing a novel memory layout for storing the means and variances of the Gaussians in order to maximize the effectiveness of vectorization. Third, we compute the Gaussians for multiple frames in parallel, so means and variances can be fetched once in the on-chip caches and reused across multiple frames, significantly reducing memory bandwidth usage. We evaluate our optimizations using both hardware counters on real CPUs and simulations. Our experimental results show that the proposed optimizations provide 2.68x speedup over the baseline Pocketsphinx decoder on a high-end Intel Skylake CPU, while achieving 61 percent energy savings. On a modern ARM Cortex-A57 mobile processor our techniques improve performance by 1.85x, while providing 59 percent energy savings without any loss in the accuracy of the ASR system.Peer ReviewedPostprint (author's final draft
    • 

    corecore